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PREFACE

This book is intended for students with a basic knowledge of physical
oceanography. It also may stimulate instructors in other disciplines of
the marine sciences to formulate practical exercises for their students.
In addition, practical workers in the field may find it useful for review.
and reference. The book contains a collection of study questions which
have their origin in practical exercises accompanying a series of courses
given by the authors at the Universities of Hawaii, Kiel, and Miami.

This collection of problems and answers cannot and does not pretend
to be complete. However, the selection of the material, and the sequence

of its presentation, should lead to an improved understanding of the basic-

principles of physical oceanography. 1In a semse, the study questions
complete the presently available textbooks. The answers are given either
in the form of references to various textbooks or as final results in
graphical or numerical form. This leaves the student the freedom to
independently solve the problems and teo then evaluate his results. Metric
units have been used throughout the text. Slide rule accuracy is con-
sidered adequate for the solutions.

In addition to the numerous redundant textbook references in Part B
(Answers), the user is referred to two generally useful publications:
""Handbook of Oceanographic Tables,” U. 5. Naval Oceanographic Office,
Spec. Publ. 68, Washington, 1966, aad "lLaboratory Manual" cn Descriptive
Qceanography by R. T. Heodgson from Oregon State iUniversity, Department
of Oceanography. : :

The authors gratefully acknowledge the valuable assistance of
Mrs. Janiece Rydell during the considerable task of producing the manu-
script. .

W. Dling, Univ. of Miami (USA)
March, 1971 'P. Duncan, Univ. of Hawaii (USA)
' J. Meincke, Univ. of Kiel (Germ.)
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GLOSSARY OF SYMBOLS

. s
indicates cross-reference to example stated

Cartesian coordinates in east, north, and downward direction

unit vectors in x, y, z direction

latitude

wave length

wave numbers in X, vy, z direction

amplitude

vertical displacement froﬁ the state of rest
coustant water depth for a fixed location
constant layer depth for a fixed location
constaﬁt horiéoﬁtal distance

1 9p v . e T
Fr i stability (frequently repcorted as E = I > 10}

time

(o, Qy, Qz) = earth's angular velocity

7.29 - 105 [sec-lj
-3
2 ]Q[ s$in ¢ = Coriolis parameter
angular frequency
fgl = Brunt-vdisH18 fre uency
N & q
relative vorticity
local acceleration of gravity

(K, K, Kz) = external forces

X ¥

(R, R, R )= frictional forces
x’ Ty z

(Tx’ Ty’ Tz) = stress

temperature [OC]
salinity [%

viii



GLUSSARY OF SYMBOLS

pressure
density

1
i specific volume

conventionalized density for atmospheric pressure

heat content
specific heat at constant pressure
specific entropy

turbulent exchange coefficients in x, y, z direction

ix



PART A - QUESTIORS



CHAPTER 1, PHYSICAL PROPERTIES OF SEAWATER

1.1 Thermodynamics of Seawater

EXAMPLE 1.1.1 The Concept of Salinity

ﬁsing the first law of thermodynamics for a multiconstituent system
within a gravitational field, the relationship

de = Tdn - pdw + Zp;dmy - gdz
: 1

describes seawater as an equilibrium system of unit mass (e = specific-
total energy = specific internal energy + potential energy; Uy = spe-
¢ific chemical potential of the i-th constituent of mass fraction m;).
A great simplification is achieved if '

iy dmy is replaced by 10'3uds
Iy

where 1 is a combined specific chemical potential and § is the sali-
nity in % Describe the law which allows the replacement of Ty dmy
and derive the simplified term. !

 EXAMPLE 1.1.2 The Equation of State for Seawater

T, S, and p are the parameters which are measured by standard hydro-
graphic techniques. 1In order to use the thermodynamic equation for
seawater, given in Example 1.1.1, one of the quantities to be deter-
mined is ' ' :

o = «(5,T,p)
(2) Using the total differential for o, discuss briefly the set of

three fundamental determinations which' have been carried out to de-
termine o = (S,T,p).

(b) Equal volumes of water with the same density (o, = 27.50) are
mixed at 1,000 meters. : '
S, = 35.00 % Ty
Sy = 34.47 %, Ty

Find the temperature, salinity, and density of the resultant water
mass. Discuss the physical significance of this.

6.60°C
2.80°¢C

i

it
il

(¢) Assume the temperature of the world oceans has increased by an
average of 2°C since the last ice age. What would be the rise of
the seca level due to thermal expansion alone?

1 %%

[
S,T,p

1 . 1-0-l.ioc~1

m
Coefficient of thermal expansion 8§ = é;
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Assume that the ocean has vertical sidewalls and an average depth
of 3,800 m, _ ) /

EXAMPIE 1.1.3 Adiabatic Processes

Referring to Examples 1.1.1 and 1.1.2,
n= W(S:T,P)

has also to be determined for thermodynamic investigations of sea-
water. One particular aspect is a process where no changes of n
occur (adiabatic processes). WNeglecting influences of salinity on
entropy changes, the relationship : : :

dn = B ar 4 N g -iEdT--—-d =0
nE T % P5T aT P ~

is obtained for adiabatic processes from the thermodfnamic equation
given in Example 1.1.1. .

dzy
dp” n=const

(a) Find an expression for

where I' is the "adiabatic lapse rate." Using ', give an expression
for the "potential” temperature B. © iz the tempsrature which a
volume of seawater would attain after it was raised adiabatically
from an initial pressure p; and an initial temperature T; to the sea
surface.

(b) Using the data given in TABLE 1,1, plot the TS-diagram on a large-
scale TS5 plotting sheet including a o,-grid. For depths greater than
2,000 m, also plot the 9S-diagram (TABLE 1.2). 1Is there any reason

to prefer the BS-plot?

(c) In the Cayman Trench (Caribbean Sea), the potential temperature

is constant at & = 3.78°C from 3,000 to 7,000 meters. 1In the nearby
North American Basin, the same potential temperature is found at

1,600 meters. In which direction does the water flow and what is the
depth of the sill between the Trench and the Basin?

EXAMPLE 1.,1.4 Effects of the Chemical Potential of Seawater

In order to obtain z complete description of sesawater as a thermo-
dynamic system at equilibrium

po= “(S,Tsp)
must alsoc be known.

(a) Which physical properties of seawater are related to the deter-
mination of p = w(5,T,p)?




TABLE 1.1
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Vertical distribution of pa?aqotoré in the Philippine Trench

(""Willebrord Snellius," ¢=9041'R,‘h=126°51'E, May 16, 1930)

Depth (m) °C K c (m sec-l) "~ Depth (m) ~ T°C Y  c{m sec-l)
0 28.80 34.44 1542.5 1,600  3.00 34.59 1488.2
25 28,30 34.35 1541.7 1,800 2.6 34,60 1489.8
50  28.20 34.18 1541.8 2,000  2.25 34.61 1491.6
75 27.50 34,50 1541.0 3,000 1.64  34.66 1505.9
100 25.90 34.71 1538.0 4,000 - 1.60 34.67 1522.9
ZOOI 15.15 34.60 1510.4 3,000 1.72 34.67 15&017
400 8.50 34,47 1490.4 6,000 1.86  34.67 1558.8
600 6.48 34.52 1485.9 7,000 2,01 34.68 1577.1
800 5.35 34,52 1484.7 8,000 2.15 ° 34.69 1595.4
1,000 4.45  34.55 1484.3 9,000 2,31 34.68 1613.9 -
1,200 3.80 34.56 1484.9 10,000 2.48 34.67 1632.3
1,400 3.35 34.57 1486.3 -
TABLE 1.2
Adiabatic temperature decrease (in 0.01°C) if a water
particle of temperature T is raised to the surface.
C
Depth {m) -2 0 2 4
1,000 2.6 4.4 6.2 7.8
2,000 7.2 10.7 14.1 17.2
3,000 13.6 18.7 23.6 28.2
4,000 21.7 28.4 34.7 40.6
6,000 42.8 52.2 61.1 69.4
8,000 - 81.5 92,5 102,7
10,000 -- 115.7 128.3 140.2
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{b} The decrease of the temperature T
increasing salinity is given by

AT = ~0.097 Cl (T, = 0°C for C1 = 0%

£ of the freezing point due to

The decrease of the temperature T of the density maximum due to
increasing salinity is given by

= = . =,0 =
ﬁTm 0.39 Cl (Tm 4°C for C1 = 0 %y

(both formulas are approximations for small temperature and salinity
ranges. For density/salinity conversion, use S = 1.80655 Cl %. ;

Find temperature and salinity where the lines of maximum density and
freezing temperature intersect., Explain the role of this intersec-

tion point with respect to vertical convection and ice formation in

fresh water lakes and oceanic areas,

1.2 Acoustical Properties
EXAMPLE 1.2.1 Isothermal and Adiabatic Compressibility
The specific volume, o, of 2 water particle with temperature T and

" gsalinity S under atmospheric pressure becomes

“rs,p C Yr T P

if the particle is brought slowly to a pressure level p, where u is

the isothermal compressibility. The adiabatic compressibility is

1 da&,s,p

*,s,p P

(a) Find a relation between 4 and » by which to compute » from
TABLE 1.3, Compute # for p = 500, and 7,000 dbar. ' '

o= -

(b} Give examples of processes in the ocean which require the knowl-
edge of either p or #.

(¢) What volume would a liteér of surface seawater (p, = 1.02 g/cm®)
have at a depth of 10,000 m in the Marijianas Trench?

Assume an average isothermal compressibility of

-11 em sec?®

L=4.9 x 10

and average density of the water column of p = 1.04 g/em®.

(d) Compute the sound velocity ¢ in m/sec using Laplaces formula,
which is : :
. c2 = Y.
OH

(v = ratio of specific heat for constant pressurc and volume respec-
tively) from the values obtained under (a). Use v/p = 1.

e b S o s J— . . - B i S T U PP
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TABLE 1.3

Isothermal Compressibility L of Seawater of
_ Salinity 34.85 %, and Temperature 5°¢

p (dbar) 0 1,000 . 2,000 4,000 10,000
-1

" 109 (dbar ) 4531 4458 4388 4256 - 3916

EXAMPLE 1,2.2 Vertical Distribution of Sound Velocity

(a) Discuss the vertical distribution of sound velocity given in
TABLE 1.1 in terms of the dependence on temperature, salinity, and
pressure. :

(b) What is meant by the expression "SOFAR CHANNEL"? Explain whether
there is any indication of a SOFAR CHANNEIL in the data given in

TABLE 1.1 and why sonic energy propagates along the axis of this
channel.

EXAMPLE 1.2.3 Near Surface Sound Channel
The'propagation of sonic energy occurs along rays, which can be de-
scribed by Snell's Law

¢
cos B

Cy

the Snell's lLaw constant for a given ray (cm/sec)

where ¢, =
e = the velocity of propagation characteristic of the medlum
at some point on the ray (cm/sec)
8 = the angle of inclination of the ray at the same p01nt (deg)
For a medium with
. QE = const, =
dz ) &1

a simple analysis yields the following equation for a ray path

X'e + ZB (_z_) 2
g1

with x = { where 8 = 0 (horizontal ray direction) and z = 0 where
= 0 (provided the region of constant gradlent were sufficiently
exten51ve)

(a) The most important constant gradient layer is the isothermal

(and isohaline) layer near the ocean surface, Which effect accounts

for a positive vertical sound velocity gradient? Give a numerical
-estimation of the gradient.
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{(b) Draw qualitatively the ray paths for sonic energy which is emit-
ted by a submerged transducer in a constant gradient surface layer.
Assume the reflections of the rays at the surface occur as from a
rigid boundary.

{c) A directional sound source is located in theé surface of a - _
constant sound velocity gradient layer. The energy is emitted in
the x-direction at an angle of @ = 30° downward from the horizontal.
At what distance would a receiver moving in the x-direction along

the surface monitor the arrival of sonic emergy? Use g3 = 0,02 sec ",
c(z = Om) = 1,500m sec™l, ‘ )

" EXAMPLE 1.2.4 Echo Sounding
TABLE 1.4 gives the average sound veiocity'c for depth intervals.
(2) Determine the time for & sound impulse to be transmittéd, reflec-
ted and received if the depth of the bottom was 125, 175, 330, 750,

and 950 m. )

(b) Calculate the absolute (meters) and relative (%) error if your
echo-sounder is standardized to a speed of 1,500 m/sec.

TABLE 1.4
Vertical Sound Velociiy Distribution

Depth (m) ¢ (m/sec) Depth {(m) ¢ (m/séc)

22 1534.2 zgg 1514.2

" 15341 ooy 1511.2

2 1533.8 o 1508. 3
1528.3 | 1505.8

100 : | 700

e 1523.9 Too 1503.7

3o 1520.3 | oo 1500. 2
1517.2 | Lo0 1500.5

EXAMPLE 1.2.5 Shadow Zones

For both of the following cases, give a gualitative discussion of
the changes in the speed of sound. At what angles is total reflec-
tion possible? Would it be possible for a submarine to hide in a
shadow zone?

(i) Salinity constant (ii) Temperature congtant
T = 25°C from 0-50 m S = 20.0% from 0-50 m
10°C from 50 m down 8 = 35.5 %, from 50 w down

m
z
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1.3 Optical and Electrical Properties

EXAMPLE 1.3.1 Attenuation of Light

(a) What causes the attenuation of incident light in pure water and
in seawater? TIs . . :

. (1 = intensity
kK = constant)

an adequate general description of the attenuation? Why do you éay
so0? :

(b) Figure 1.1 shows the results of some measurements of the spectral
attenuation coefficients. Using the results from (a), discuss

Fig. 1.1 briefly and determine if the heat gain due to insolation is
important at a depth of 5 m in the open ocean {extrapolation of the

curves to the right in Fig. 1.1 is possible; the trend does not change
throughout the infrared range). '

070

Q.60

8.50

H.40

&30

ATTENUATION COEFFICIENT PER METER

.20

OCEANIC, MAX

- . OCEANIC, M

L 1
.dl..'} BLUE ...';0 GREEH 55 YELLOW ) ORANGE 55

Fig. 1.1: Spectral attenuation coefficients in pure water and

different types of seawater. From Sverdrup, et al.,
(1942).

EXAMPLE 1.3.2 Color of Seawater

The color of oceanic water masses is determined b

y the fransparency
D of seawater with

D = 100-¢ (M2

- mr———
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and by molecular scattering, the intensity I of which is characterized
by L1 : .
P

() Using Fig. 1.1, describe why clean ocean water has a blue color
and why coastal waters tend to appear green.

(b) Which is the most important factor determining the color of sea-
water?

(c) Why does light scattering by particles only play a minor role in
determining the color of the sea (if the particle concentration is
not too high)?

(d) How would the color of oceanic and coastal water change if the
spectrum of the incident light were cut off for wavelengths

A< 0.55 u? :

EXAMPLE 1.3.3 Temperature Measurements from Air and Space

(a) Which physical process offers a possibility for remote sensing
of ocean temperatures and which law describes this process? What
basic assumptions are involved?

(b} From Wien's displacement law, find the wavelength e at which
maximum emission occurs, Using Figure 2.1, decide whether he
suitable for airborne or space borne san51ng of ocean temperature.
Assume a sea surface temperature of T = 15° C

(¢} Which sources of radiative energy contribute to the final signal
of a radiometer, which senses radiatien in bands from 3 to 4 p and

9 to 12 ¢ and which is mounted on an aeroplane or on a satellite so
that it faces a small area of the ocean surface? Taking the ewissiv-
ity of the ocean surface to be 0.98 and the reflectivity of normal
incident radiation to'be 0,02, make a qualitative statement about

the accuracy of the remote temperature sensing techniques.

(d) If the attenuation of infrared light in seawater is &4 orders of
magnitude larger than for the visible part of the spectrum, give an
order of magnitude estimate of the depth of the surface layer which
effects the infrared radiative output from the sea surface (use the
results from Example 1.3,2).

EXAMPLE 1.3.4 Electrical Conductivity of Seawater
Seawater is known to be z good eclectrical conductor,
(a) From the structure of the water molecuies, find the reason for

the high conductivity values. How does conductivity depend on sa-
linity, temperature, and pressure? (Give a gualitative answer.)
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(b) Discuss the difficulties involved with salinity determinations
using conductivity and induction cells. How are the cells cali-
brated? ’

EXAMPLE 1.3.5 Electromagnetic Method of Measuring Currents

-,
The movement of ,seawater with the velocity V through the stationary
magnetic field H of the earth gives rise to electric potential
gradients V)

S>>
V9 = (V x H)

’ " -
(r = resistivity, I = electric current density)

(a) Assume a straight canal of width L, a current flowing through
the canal with speed v, and two electrodes being mounted in the sur-
face layer at.opposite places on the banks of the canal. Derive an
expression for the current velocity as a function of the potential
difference (in volts) between the electrodes. What further informa-
tion do you need for computing the current speed, and how could they
be obtained? :

(b) What else must be considered if the electrodes are not installsad
at a fixed location but are tewed behind a ship? Discuss the short-
comings of current measurements by means of a GEK (geomagnetic elec-
trokinetograph), especially with respect to use in shallow water and
in areas with a complicated vertical profile of current velocity.

1.4 Diffusion and Mixing

EXAMPLE 1.4.]1 Richardson's Criterion

The Richardson criterion for maintaining turbulence in a stratified
medium is given by :

g dp
d” dz PN
Rf = T du.2 < 1 (Richardson-flux-number)
Ap ()
where A, and A = coefficients of eddy diffusivity and eddy viscesity

respectively,

(2) Discuss Rf in terms of potential and kinetic energy rates. Is
A fA generally greater or smaller than 1?

(b} Using finite differences and a maximum Az value of 40 meters,
plot v Rf = Ry = 1 (Richardson-number) and indicate the turbulent

Aq

. -3 -2 -3
regime. Let Ap = 10  and 10 , p = 1.0g cm

N
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EXAMPLE 1.4.2 Approximations of Reynolds Stress Terms

Reynolds introdeced the assumption ¥ = ¥ + Y’ (with ¥ = v,.p, P ¥ =
time average, Y = turbulent fluctuation) into the equation of motion.
The equation, which results for the averaged field of motion, contains

V- P:‘\;:\}'

This term describes the friction due to turbulent velocity fluctua-
tions in a flow with the average velocity y and v $ =T

Reynolds stress tensor. For practical reasons, T is often approxi-
mated by

wherelﬁ is the deformation tensor of the average velocity and A is
a proportionality factor. This factor A is called the coefficient
of eddy viscosity and is used either as a scalar, vector, or tensor.

{(a) Discuss the significance of using A as a scalar, a vector, or a
tensor to describe eddy wviscosity.

(b) Why is A most frequently used as a vector?

FXAMPLE 1.4.,3 Vertical and Horizontal Eddy Diffusivity

(a) The salinity distribution observed in the transition area hetween
the Baltic and the North Sea was interpreted by Jacobsen as an equi-
librium between horizontal advection and vertical turbulent diffusion.

(i) Find the appropriate equation (e.g., refer to Example 2,5.1)
and calculate A, from the data given in TABLE 1.6. The
average density of the water column is 1.02g cm'3; the
distance between stations A and B was 47 km,

(ii) Plot u, 8 at both stations and Aé against depth,

(iii) Why do the low-salinity Baltic water and higher-salinity
North Sea water essentially maintain their identities?

(b) The horizontal salinity distribution in the Irish Sea (see Fig.
1.2) can be described by horizontal advection due .to a current of
speed u and eddy diffusion transverse to the current. Using a
coordinate system oriented with u parailel to the x-direction and
y normal to x, the horizontal eddy diffusivity Ay can be described
by B
ds a2
Ay =g/ T
dy
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. 30[

Fig. 1.2: Mean isochalines for the Irish Sca. From Proudman, (1952).
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TABLE 1.6

Vertical Distribution of Current, Velocity, and Salinity
in the Kattegat

z u ' . 5 %

_m_ cm_sec Station A Station B
0.0 14 . 18.1 18.2
2.5 5.0 18.3 .18.?
5.0 0.8 18.6 ' 19.1
7.5 - 4.8 19.5 19.5

10.0 10.7 20.5 20.0

'12.5 -15.5 23.6 23.4

15.0 -17.5 . 26.7 - 26,8

17.5  _17.6 28.3 29.1

20.0 - -

Applying the formula to the vertices of the isohalines shown in
Fig. 1.2, Ay can be estimated using

2
-

A = oy 1 1314_
y 4 &x

for a vertex P, where 8x is the distance from the vertex behind P
to that in front of P and 8y is the intercept of the tangent at P
rnade by the ischaline in front of P.

Using u = 1 ¢m sechl, find AZ for the Irish Sea from Fig. 1.2 for
isohalines 34.4, 34.5, and 34.6 %, . . -

{(c) Explain the reason for the order of magnitude differegces between
_Az and Ay determined in (a) and (b).

EXAMPLE 1.4.4 Spatial Scale of Turbulent Processes:

From the statistical theory of turbulence the relation

A n»L4/3

where A = eddy coefficient, L = length scale, €.g., diameter of eddy
or depth of wind mixed layer, was derived by Weizlcker and Heisenberg.
The basic assumptions in this statistical theory are homogeneity
(local independence) and isotropy (independence from rotation or re-
flection) of the statistical parameters.
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(2) Discuss the order of magnitude range of the eddy coefficient in
the oceans in terms of the proportionality relation given above,

(b) Discuss the validity of the assumptions for oceanic conditions.

1.5 Properties of Sea Ice

EXAMPLE 1.5.1 The Anomalous Density of Water

(a) Why does ice float? (Consider the molecular arrangements in
water and ice.) What would happen to the climate if ice would behave
l1ike a normal solid phase?

_(b) Discuss the effect of an ice cover on the vertical distribution
of temperature in a water column below it. Distinguish between a
freshwater lake and the ocean..

(c) 1s it:possible to hinder the formation of ice by pumping bottom
water to the surface in the (i) North Sea; in the {ii) Baltic Sea?

EXAMPLE_l;S.Z Freezing and Aging of Sea Ice

(a) Discuss the formation of sea ice.under different environmental
conditions as characterized by the data given in TABLES 1.7, 1.8, 1.9.

(b) Why does the porosity of sea ice increase with increasing age of
the ice? How can this effect be used to explain the fact that the

air content of sea ice from high saline ocean areas is larger than
that from waters with lower salinities?

TABLE 1.7

Salinity of Young Sea Ice, Formed at Different Air Temperatures

Air temperature (°C) -16 -28 =30 =40
Salinity of sea ice &) - 5.64 8.01 8.77 10.16
TABLE 1.8

Vertical Salinity Distribution in a Sheet of Young Sea Ice

Vertical distance from 0 6 13 26 45 95
ice surface (cm)
S{y of the ice _ 6.74 5,28 5.31 3,84 4 .37 3.17
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TABLE 1.9

Specific Heat‘pf Sea Ice

Temperature -
Cc) -2° ~4° . -8°  -14° - _2¢°
Salinity (8 %) -

2 2.57 1.00 0.63  0.54 0.5
4,63  1.50  0.76 0.57  0.55
8 8.76  2.49 1.0l  0.64  0.60
10 10.85  2.99  1.14  0.68  0.62
15 16.01  4.24  1.46  0.77  0.68

NOTE: Tables 1.7, 1.8, 1.9 from Neumann and Pierson (1966).

EXAMPLE 1.5.3 Growth Rate of an Ice Sheet

Assume an ice sheet of thickness h. If it grows at a rate dh during
a time interval dt, the released heat of fusion per unit volume, W,

where . kﬁﬂ
T ]
must be transported upward by the heat flux through the ice, F, given
by
dT
F = - £dz

where A is the latent heat of fusion for ice of density p and thermal
conductivity £,

(2) Find an approximate formula which enables you to calculate the
thickness h of an ice sheet from the time history of the surface
temperature of the ice, Assume the temperature gradient in the ice
to be iinear and the lower boundary of the jce sheet be kept at the
freezing temperature,. 0°C.

(b} What assumptions about the water underlying the ice sheet are
necessary? Would a layer of snow on the ice affect the calculations?

(c) Calculate the thickness of an ice sheet which has grown for ' a

period of 30 days at surface temperatures of -15°C. Use p = 0.917g cqu,
A = 80 cal g'l, 2 = 0.006 cal em~1l gec” degr"l.
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CHAPTER 2.  BUDGET OF HEAT AND MASS

2.1 Heat Transfer Ocean <-> Atmosphere

EXAMPLE 2.1.1 Equation of Heat Balance

Derive the heat balance equation for a water column of 1 m? cross

section, which stretches from the surface to the bottom of the ocean.

Arrange the heat gain terms at the left side of the equation,

EXAMPLE 2,1.2 Radiation Balance

The short wave radiation from the sun has an intensity of

1.9 cal em™  min™" at thf distance of the earth's arbit. The earth
emits 0.49 cal em™? min™! in long wave radiation. Explain quanti-
tatively whether the earth's temperature can remain constant for
these radiation fluxes. (Acc. to v. Arx, 1962.)

EXAMPLE 2,1.3 1Influence of Atmospheric Gases (*1.3.3)
Figure 2.1 gives the spectral absorption of atmospheric gases,
(2) Using Wien's displacement law, indicate on Fig. 2.1 the wave-
length bands of maximum solar radjation input (TSun ~ 6,000° K) and

. I . . o
maximum earth's emission (Tearth 2877 K).

(b) Explain the expressions "radiation window" and "green house
‘effect," :

(c) How would temperatures on earth change due to a slight decrease
in solar radiation intensity?

S o, F'O\
. f
s {
!
i
B ol
_g [+1
O
| A ~
r f
i . ; 0y - i
H } J
° t !__,lk\_' L o A b i i e
or 47 03 04 03 1 2 14 s [ a1 4 s

Wernilatgrh, miceor

¥ig., 2.1: Spectral absorptivity of water vapor and other atmo-
spheric gases. From v. Arx (1962).

RS,
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EXAMPLE 2.1.4 Absorption of Radiation Energy

Assume the surface of an oceanlc area to receive 295 cal/cmz duriag-
the day and to emit 295 cal/cm? during the night.

(a) Using » = 2—— (log Qz - log Qz+D) and TABLE 2.1, compute the _
diurnal temperature variations for depth intervals given in TABLE 2.1.
For the specific heat of seawater use 1 cal g -1 °¢-1, Qz = amount of
heat available at depth z im cal em 2, = depth interwval.

(b) Note the assumption involved.

TABLE 2.1

FExtinction Coefficient x Per Meter for Oceanic Water Masses
(After Sverdrup, et al., 1942)

Depth Interval _ :

{m) X
1.080
0.230
0.159
0.120
0.09%4
0.083

COoOVNKMO
] ]
R ot
SCOQWNM

B

[ =

i
L

EXAMPLE 2.1.5 Heat Storage Capacity (*2.2.1)

(a) The global annual temperature fluctuations can be approximated
by a 2°C amplitude for a layer of 100 m depth in the ocean and a’
7°¢C amplitude for a layer of 10 m depth of the land surface.

Find the annual heat storage capaclty of ocean and land masses ‘and
compare it to the daily incoming radiation of 0.21 cal cm™2 min-

at the earth's surface. How do you explain the different capaci-
ties? ' '

(b) By what amount could the ' temperature of the "homogeneous"
atmosphere (height 8,000 m) be increased by using the heat which
is annually stored in the oceans and in the land masses7 :

(¢} Explain the following observation: During January the earth
passes the perigee of her solar orbit and thus the heat gain of the
earth's surface increases by 7%. Desp1te this fact, the earth's
surface has average temperatures of 12.5°C in January and 16.1°¢

in July :

(d) Figure 2,2 shows isopleths of the Atlantic Ocean surface tem-
peratures.
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(i) Why is the amplitude of seasonal temperature variation in
the Atlantic greater in the Northern Hemisphere than in the

Southern?

(ii) Why is the '"thermal equator" (dotted

located in the Northern Hemisphere?

line in Fig. 2.2)
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Fig. 2.2:

Jon Feb Mar April

o
May Jung July

From Defant (1951),

Use the following values:

— 1 1
Aug Sept Oct. MNov. Dec. Jon

Isopleths of surface temperature in the Atlantic Ocean.

Ocean Land Atmosphere
Area (knm°) 360.8 x 10° | 149.3 x 10
Deusity (g-cm ) 1.0 1.6 1.29 x 1073
Specific Heat (ca1.g"1.°c'1) 1.0 0.2 0.24

FXAMPLE 2.1.6 Temperature Difference Water-Air

(a) Why is the sea normally warmer than the air above it? .
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(b} Give examples where the converse is true.

(c) Areas in which the atmospheré is warmer than the sea are often
hazardous to shipping. Why?

2.2 Heat Transfer in the Ocean

EXAMPLE 2.2.1 Energy of Oceanic and Atmospheric Circulation (*2.1.5)

(a) Calculate the heat energy which wouid be released if all oéeanic‘
and atmospheric circulation came to a standstill (consider only the
released kinetic energy). '

(b) Compare these results with the heat which the ocean and atmo-
sphere receive per day by radiationm.. .

{c) Compare the kinetic energy contained in the oceans and in the
atmosphere with the latent heat contained by water vapor in the air.

(d) Although the kinetic energy of oceanic circulation is iow cor-~
pared to atmospheric circulation, why does the former have a pro-
nounced effect on the latter?

Ocean Atmosphare
Average speed (V) 10 cm/sec 10 m/sec
Mass (m) 1.4 x 1024 g 1022 £
Area (A) ' 360 x 10° 1n2 510 x 10° Km?
Radiation (Qi) 295 cal/cmzlday 700 cal/cmzfday
Wéter vapor content (M) T 3 g/cm2 of earth's surface
Heat of evaporation (L) 590 cal/g

EXAMPLE 2.2.2 Meridiopnal Net Heat Transfer

Sverdrup gives the following estimates of mass ‘transport across the
equator in the Atlantic Ocean.

Direction  Transport Average Temper-~
Water Mass (towards) (106m /sec) ature (QC)
Surface Water N b 25
Central Water N 2 5
North Atlantic Deep Water s 9 3
Antarctic Bottom Water N 1 2

Calculate the net heat transport and its direction,
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EXAMPLE 2.2,3 Advective Heat Transfer of the Gulf Stream

Assume that the Gulf Stream is L= 100 km wide, D = 500 m deep and
that its average speed if V = 150 cm/sec. The temperature of the
Gulf Stream at 40°N is AT = 4°C above the average for this latitude.

(a% Caleculate the excess heat flux across 40°N by the stream per

cm® per second. Take the specific heat of water Cp = 1 cal g‘l oC"l.
From this heat flux, calculate the power in kilowatts of the Gulf
Stream. :

(b) Compare the kinetic energy of the stream with its excess heat
content per unit mass.

EXAMPLE 2.2.4 Vertical Heat Conduction

The theory of heat conduction shows if the surface change in tem-
perature has the simple form

T, = a,cos —

at depth z the temperature change is given by:

2
T (t,z) =2, - e oz, cos C—EE ~ az)

o= ’KE? » 85 = amplitude of the temperature change at the surface,
T = period of the temperature change,

(a) Let cos (ZEE ~ @z) = 1 and determine the depths at.which the tem-
perature change is e~ of its surface value: if 7 = 1 day; if 1 =
1 year. '

In both cases use Az = 1.3 x 10-3 cm2/sec (molecular thermal dif-
fusivity); A, = 30 cm?/sec (eddy thermal diffusivity).

Derive the general formulas first and then calculate the numerical
answer. Work in the cgs system but give the answers in meters. .

(b) At what depths is the phase lag 180°, 360° compared to the sur-
face change? Use A, = 30 cm?/sec; 7 = 1 day, 1 year.

(¢) At what speed does the surface disturbance penetrate downwards?
i.e., what is the phase velocity? Use Ay, = 30 cmzfsec; T = 1 day,
1 year.




A-20

EXAMPLE 2.2.5 Vertical Heat Transfer Due to Tidal Mixing

The vertical distribution of maximum tidal- currents in shallow water
can be described by ;

H- z.1/5

(1) u(z) = u, (-“ﬁn-) {z = 0 : surface
z = H : bottom
u,= velocity at z = o)

Active vertical mixing in the presence of a density stratification
takes place if '

e

zu 5 < 0.5 (Ri = “Richardson” number)

{2) Ri =
: . &

oibg

The maximum vertical temperature gradient, which is created by down-
ward penetration of heat_from diurnal insolation into an initially
homogeneous water mass (T,S), can be obtained from the heat conduc-
tion equation as :

- Bz —
G Y LU & .
o dz T 2 BT - e ﬁ AT T=1 day °?

T, = amplitude of diurmal tem-
perature changes

{a) Determine the depth where the vertical density gradient created
by diurnal insolation prevents vertical mixing due to a shearing
tidal current. (Derive an expression for the critical vertical den-
sity gradient from (1) and (2). Convert the temperature gradients
obtained from (3) into density gradients assuming constant salinity.
Use 10 m - steps for computation.)

(b) Compute the current velocity which would maintain homogeneity of
the entire water ecolunn. :

r

(¢) Explain the remarkable low amplitudes of the seasonal tempera-
ture variations in the English Channel area.

Use the following values (North Sea):

-1 “_120C

35 %

160 g cm_lsec
0.2°¢C

H=60m AZ

v =l
I

fl
it

u, = 0.7 m-sec-l T,

2.3 Water Transport Ocean <-> Atmosphere

EXAMPLE 2.3,1 Meridional Distribution of Evaporation and Precipitation

Figure 2.3 gives the meridional distribution of surface salinity (5)
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and evaporation minus precipitation (E - P) for the world oceans.

(a) Discuss

the close similarity of the S and E - P curves and the

significance of the differences.

(b) Why is the salinity of the Atlantic Ocean higher than in the
other oceans?

In answering, consider the complete water-budget equation:

W= ((E-P)Y+ F-M+ (6-L) +R

where E = Evaporation
P = Precipitation
F = Formation of ice
M = Melting of ice
G = Gain by currents
L = Loss by currents
R = River run=-off
+100 . T 350
E-P | 5: Salinity ' | 5
in cm in % Yoo
E-P: in cm/year
N -35.0
°T—=<
- N\ i
\\ ;
- -34.0
=100 T T T T T T T T : T T T T T T T
BO°N  &0° 40° 20° o° 20° 400 60°S
LATITUDE
Fig, 2.3: Mean meridional distribution of evaporation minus pre-

EXAMPLE 2.3.2

cipitation and surface salinity for the world ocean.
After Wlst (1954).

Surface Salinity, Evaporation, and Precipitation

Plat the values given in TABLE 2.2 in a S vs. (E - P) diagram.

(a) .Is a lincar relationship between § and (E ~ P) justified?

Base

your explanation on the graph and on the processes determining S.
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TABLE 2.2

Five Degree Zonal Averages of PreC1p1tation, Evaporatlon and Salinity
(After WUst)

Latitude P E

No Zone _ {em/yr) {en/yr) S %
1 N 55-50 105 55 33.41
2 50-45 112 66 . 33.69
3 45-40 102 ' 84 34.14
4 40-35 86 108 35.41
3 35-30 14 125 35.50
6 30-25 63 132 35.76
7 25-20 57 - 137 35.64
8 20-15 70 135 - 35.14
9 15-10 - ' 103 132 : 34.78

10 S 10-15 94 139 35.42
11 15-20 76 137 35.62
12 20-25 68 133 35.74
13 25-30 65 123 35.68
14 30-35 70 110 35.46
15 35-40 90 96 35.04
16 40-45 110 78 34,54
i7 4530 117 56 34.14
18 50-55 109 39 33.96
19 55-60 84 12 33.94

EXAMPLE 2,.3.3 Diurpal Salinity Variations

TABLE 2.3 gives hourly surface salinities averaged over several days
at a Meteor statiom and an Altair station.

(a) What is the average daily variation of salinity at each station?

(b) What causes the maximum salinity in each case? Consider the dif-
ference in position of the stations.

(¢) The decrease with depth of a salinity perturbation follows an
exponential law similar to that of temperature (see Example 2.2.4).
At what depth does the perturbatlon reach 0.002 %y at each station?
Use an eddy diffusivity A, = 30 cm?/sec.

(d) Assuwe the period to be one year instead of one day. Calculate
the depth at which the amplitude reaches 0.002 %, .
Why is such a depth not reached when a thermocline is present?
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TABLE 2.3

Variation of Salinity with Time of Day
(After Defant) '

Local :
Time METEQR STATION ALTAIR STATION
(Hours) 2.1° s, 4° W 44.5° N, 34.0° W

1 35.468 35.860

3 35.466 35.866

5 35.464 35.887

7 35.464 35.876

9 35,466 - . 35.882

11 35.470 . 35.889

13 35.480 35,885

15 . 35.490 35.893

17 35.504 35.913

19 , 35.486 35.900

21 35.474 35.883

23 35.466 : 35.879

EXAMFLE 2.3.4 Evaporation from the Mediterranean Sea

In the arid climate of the Mediterranean Sea, the heat-loss of the
water to the air is Q, = 65 cal/cmzfday greater than in the equiva-
lent latitudes of the Atlantic, ’

(a) If a dam were built across the Straits of Gibraltar, by how much
would the level between the Mediterranean and the Atlantic differ in
a year? (Neglect river discharge.)

(b) If a 100% efficient hydroelectric power station was built at the
dam, how many kilowatt-hours of electricity could it produce per
year? Area of Mediterranean, A = 2.97 x 108 km2.

(c) How long would it be before the salinity in the Mediterranean

increased to 3% Let the present average salinity, S, be 3% and
average depth, H, be 1,500 m.

2.4 Mass Transport in the Ocean

EXAMPLE 2.4.1 Propagation of Surface Salinity Disturbances
The downward propagation of a positive or negative salinity anomaly
spreading from the surface is approximated by
A, 35

_...z. - _—— = - -
a az (E P) SQ
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Given Ag =1 cm-lsecﬂl,so = 35.00 %O(salinity at the surface},

p = 1.02 g/em?, and assuming reasonable values for (E - P), calcu-
late the salinity at a depth of 10 m at the end of one year in:
(a) an arid climate

(b) a humid climate.

EXAMPLE 2.4.2 Horizontal Salinity Distribution in an Estuarine Area

The horizontal salinity distribution in the German Bight (North Sea)
is strongly influenced by the fresh water discharge of the Elbe and
Weser rivers (see Fig. 2.4)., A possible two-dimensional description
is given by '

- M uxf =X
S(x,y) =8, -~——cos uye A

wfAh A ¥
Xy

where the fresh water run-off
at x = 0, E(y), is

2{y) = M cos n} at 0 = f < Vo,
Z(y) = 0 at y >y, |
and S, = 34 %,.

M

= 6.5 X 10-3 £ cm-zsec =
amount of salt to in-

56° crease the salinity of
N the water masses with
salinity S,
1-{ -
H o= Sy, Yo = 80 lm
Ax =2 - 106 g cmhlsec-l
A =6 - 106 g cmulsec-
y
(A and are exchange co-
547 b n54° efficients in x and y direc-
tion (see Fig. ).

Discuss and compute §(x,y) for
a grid Ay = 20 km, Ax = 50 km
and draw the ischalines from
29 -33%, 8.

cr)

2,4: Surface salinity distribution
in the German Right. From
Schott (1966).
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2.5 Water Mass Identification and Formation

EXAMPLE 2.5.1 Distribution of Various Properties

The distribution of a scalar property s (e.g., temperature, salinity,
oxygen, etc.) may be described by a functional relationship

s = f(xsy;Z,tj
(a) Using a Taylor series expansion, derive .
ds _ ds Os ds ds
=5 = = = t w =
de " TV tTVy TV

and identify the various kinds of terms as well as the assumptions
involved,

(b) Individual changes in s are mainly caused by mixing pfocesses

A . A
SS (_E gﬁ) + i (_I s

.3 Azlas
e ox’ ' Qy

b3yt 5
or by biochemical processes IR.

(i) 1Include the expressions for mixing and biochemical pro-
cesses in the formula derived under (a). '

(i1) Explain the expressions "conservative" and "monconserva- -
tive" properties of seawater,

(iii) Which processes can affect the field of the scalar
property s in the following cases:

ds ds :
=0 a0 A=A =A =0, B=0,usv=yv=0,
ds oz @s

EXAMPLE 2.5.2 T-S Relationship

Local changes of a property s (e.g., temperature, salinity) with
time due to nixing processes may be described by

ds(x,t) _ BZS(X,t}
8t Ax ax

Using the initial condition

_ _{s1 for - o < x <0
s(x,t = 0) "5;0 for 0 < x <o
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the solution of the differential equation is

_ 85 - s N . '
s(x,t) = ~l‘?{*‘1 [1. ¢ CZ[K;E)] + s,
where o

2

o;——ﬁx

dt (error'fun:tion, erfc)

(a) Two water masses of equal densities are initially separated by
a vertical wall, Their temperatures and salinities are T , 8 , and
T, S|, respectively. At time t = Q the separating wall 3s r@moved
(treat the problem 1-dimensional with the wall placed at

X=0, -o<x <+ ®), Find temperature and salinitg of the mixed
water mass at x = £ 0, + 102, + 2‘102, = 5-102, %= 10~ em at the
times t = 0, 102, 9-102, 10¢, and » seconds. Present the results
graphically in an x, T-diagram and an X, S-diagram with t as the

parameter,
- o° . | 102 2
Let I, =0¢ S, = 28?& Aﬁ .10 cm- sec
o .
T, = 20°C s, ¥

(b) Plot TS-diagrams for each instant by reading T and S values from
Xx'= 0 to x = £ 103 in 102 cm intervals from the graph obtained under

(a).

(c) Comsidering the preceding exercises, what is the practical use
of a2 TS-diagram?

(d) How many water masses can you distinguish in the TS-diagram for
a station in the western subtropical South Atlantic given in

Figure 2.5? Identify them and give approximate temperature and
salinity core values.

EXAMPLE 2.5.3 Application of the TS-Relationship

The TS-relationship is used to trace Atlantic water masses spreading
into the Norwegian Sea. The two original water masses are defined
as Atlantic: T = 10,2°C, S = 35.45 % : Norw. Sea: T = 2.5%¢,

S = 34.90 % . Plot these two TS-pairs in a TS-diagram and connect
both points by a straight line. Divide this line into ten equal
portions so that they mark fractions of 1/10 + 9/10, 2/10 + 8/190,
ete., of each of the original water masses. If the TS-pairs from
TABLE 2.4 are also plotted, for each depth one can read the fraction
of Atlantic water observed at the corresponding station. The product
of layer depth (differcnce in depth between two iS-observations) and
average fraction of the inflowing water mass is called the "equiva-
lent layer depth." Subsequent summation for all depth intervals
yields the total equivalent layer depth for one statiom.
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section given in TABLE 2.4,

(b) State the assﬁmptions involved,

TABLE 2.4
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(a) Sketch the distribution of the equivalent Layef depths along the

Temperature and Salinity for Norwegian Sea Stations'

1 2 3 4
® 63° 02' N 67° 41' N 70° 10' N 72° 55' N
A 03° 40' E 08° 30' E 10° 10" E 15° s0' E
Depth (m) ~ | T(°C) s&). T S T 3 T S _
0- 7.1 35.00 |6.4  35.14 5.6 35.08 | 4.3 35.05
30 .7 .18 .98 .17 .63 .09 .29 .05
50 .66 .18 .68 12 48 10 .27 .06
75 .60 .34 .63 .16 .73 .10 .25 .06
100 .71 .18 | .15 .15 .73 .10 .22 . .06
150 .65 .14 | 5.57 .13 .33 .10 | 3.93. .06
200 .38 .15 .30 .16 .65 .09 .60 .05
300 6.90 4 4,92 .15 .61 .08 |2.98 .04
400 - 5.62 A4 | 4.12 .08 .49 .12 11.73 34,99
] 500 2,95 00 12,23 .00 21 .09 | - -
. 600 . 0.31 34,92 | 0.47 34.94 | 4.06 07 | - -

EXAMPLE 2.5.4

Radioactive Tracers

Oceanic water mass circulation can be investigated by using radio-
active substances with an appropriate decay time,

(a) State the assumptions which have to be fulfilled by a radiecactive
tracer in order to obtain information on the path and velocity of
water mass spreading. . - :

(b) Figure 2.6 shows the meridional distribution of 140—concentra-
tions in the western Atlantic Ocean. The numbers represent the
average l4C-concentrations %iven as l0%-difference from the age-
corrected concentration of 14C in 19th-century atmospheric CO». The
numbers at z = 0 represent the 1%4C-concentrations of the correspond-
ing water masses in the area of their formation. Determine the age
of the different water masses by using the assumption that within

80 years the concentration of 14C decreases by 1% of the amount
available. : '

£ ' .
{(c) Dpes.liC fulfill the assumptions stated under (a)? 7TIf the answer
is yes, compute the velocities of spreading for the differenft water
masses and compare the results to “classical™ computations.
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"MAMPLE 2.5.5 Water Mass Formation in the Gulf of Naples

(a) From TABLES 2.5, 2.6, and 2.8, given below, draw isopleth dia-
grams of temperature, salinity, and density (months on the abscissa,
depth on the ordinate; draw isopleths separated by ope-tenth of 1°¢,
1% 8, and 1 Gt-unit). -

(b) Vhen does spring warming begin? When does the thermocline begin
to form? How do you explain the intermediate temperalure minimum
during the summer?

(c) Explain the coincidence of maximum salinity in December with
maximum precipitation (TALGLE 2.7) and the coincidence of minimum
salioniry in July with minioum precipitation. Nint: In the following
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budget relationship, consider only the first two terms:

w
1]

f(E - P’C)M)

Evaporation P = Precipitation C = Horizontal Advection

<>}
4

Vertical Mixing

(d) State whether temperature or salinity has a more important effect
on the density structure in the Gulf. To what depth does the'verti-
cal convection reach in winter? Show the region of homogeneity by
cross-hatching in the density diagram, :

{e) On what factors does the maximum depth of vertical convection
generally depend? :

(i) In the Gulf of Naples?
{ii) South of Greenland?
{(iii) In the Central Baltic?

(f) Sketch an 1sop1eth diagram of the temperature between 0-200 m
for:

(i) A tropical sea whose temperature distribution remains con-

A

stant during the year. A temperature differcnce of 16°C is
found between 80 and 100 m. The surface temperature is 27°¢.

(ii) A sea which is completely mixed by tidal turbulence, €.8.,
the Irish Sea, for which surface temperatures (°C) are given
in TABLE 2.9.
(g) What factors are decisive for the formation of:
(i) a thermocline
(ii) a halocline
(iii) a pycnocline

In each case give a characteristic example.
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2.6 Thermohaline Circulation

EXAMPLE 2,6.1 Thermchaline Surface Layer Circulation (*3.5.4)

(2) Name the three driving forces of oceanic surface layer circula-
tion caused by meridional temperature differences.

(b) Sketch qualitatively the distribution of the meridional compo-
neats of the oceanic surface layer mass transport between 60°N and
60°S, which is caused by the forces mentioned under (a). )

(¢) Add to the schematic diagram obtained under (b) the meridional
distribution of the surface height which is due to the prevailing
{geostrophic) surface current systems, From comparison of the dis-
tributions obtained in (b) and (c), state qualitatively to what
extent the thermohalinme cireculation contributes to the observed
current system. Give a thermodynamic reason.

EXAMPLE 2.6.2 Circulation Patterns of Adjacent Seas

Sketch the pattern of vertical and horizontal circulation between
the ocean and an adjacent sea. connected over a sill in: (i) an-
arid climate; (ii) a humid climate; and give examples of such
circulation. '

EXAMPLE 2,6.3 Maintenance of the QOceanic Thermocline

The oceanic main thermocline is considered to be generally main-
tained by the balance between turbulent downward diffusion of heat
and upward advection of cold water.

(a) Use a simple relation (see Example 2.5.1) to compute the ver-
tical velocity component from temperature observations. Assume Az
to be independent of depth.

(b) Using the temperature distribution given in TABLE 2.10 and
Az =1 em sec“l, compute the vertical velocity which is necessary
to keep the vertical temperature distribution stationary.

(¢) Discuss briefly the shortcomings of the above-mentioned concept
with regard to the occurrence of the main thermocline in the ocean.

TABLE 2.10
Mean Temperature Distribution

Z m) 50 75 100 125 150 175 200 225 250
[{C) 25.5 25.0 22.5 .19.0 16.5 14.5 13.0 12.5 12.0
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EXAMPLE 2.6.4 Thermohaline Circulaticn in the Norwegian and Greenland Sea

The currents in the Greenland-Norwegian Sea area can be described
in the following way: (i) The main current systems tend to follow
the margin of the Greenland-Norwegian basin with a cyclonic sense

of rotation; (ii) around islands an anticyclonic circulation is
observed,

(a) Attempt to explain these cbservations by using a2 thermohaline
concept based on the fact that the climate of the Norwegian-
Greenland Sea area is hunid. ) .

(b) Are other explanations of the Norwegian-Greenland Sea circu~
lation possible?
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CHAPTER 3. OCEAN CURRENTS

3.1- Hydrostatics

EXAMPLE 3.1.1 Gravity

(a) The effective force of gravity at the earth's surface is not
directed toward the center of gravity of the earth. Explaion by
means of a sketch. Give equations for the accelerations involved.

(b) Assume that the earth was, at one time, spherical. Sketch the
forces at latitude ¢ = 0°, 30 , 60°, and 90° which have led to the
present shape of the earth.

EXAMPLE 3.1.2 Distribution of Gravity

The acceleration of gravity, g, varies with latitude and depth (in
cm) according to the following approximations:

8o = 978.049 [1 + 0.0052884 sin’ o - 0.0000059_sin2 2]

g =g +2.303 . z - 107°

(a) If the z-axis is directed vertically downwards from z = 0 at
the sea surface, calculate in dynamic meters the depth of the sur-
face z = 1,000 m for latitudes © = 0°, 60°, and 90°. How much
energy is necessary to raise a unit mass from 1,000 m to the sur-
face? :

(b) For latitudes 0° and 60° determine the relationship between
dynamic and geometric depth at 1,000 and 10,000 m. Is the latitude
effect or depth effect more important?

(¢) A column of water at latitude 60°N has a mean temperature of

4°C and a mean salinity of 35.00%, . (For the computation of the

mean density, use the arithmetic mean between surface and the ‘given
- depth.) Calculate the pressure in dbar at 1,000 and 10,000 m.

EXAMPLE 3.1.3 Barotropic'and Baroclinic Modes

Two parallel equiscalar surfaces with scalar fields L; and L, defined
in the region R are described by F(1,,L;) = 0. If, e.g., the field
Ly represents pressure p or temperature T and F(p,Lp,) = 0 or

F(T,Lz) = 0, then the region R is called barotropic or thermotropic,
respectively. L represents any other scalar fieid (density, salin-
ity, etc.). If equiscalar surfaces intersect, e.g., F(p,Lz) # 0 or
F(T,L,) # 0, then the region is called baroclinic or thermoclinic.

(a) Explain the use of the barotropic coefficient r9 _ 14p e
o o Ap § geom,
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-
and the piczotropic coefficient Y =[%§1 hvsical
physica

(b) What media are described by F;

. _ O |
{c) Discuss the possible vertical distributions of velocity in a
barotropic and a baroclinic ocean. '

=0, =0 7
Yp

EXAMPLE 3.1.4 Stability Oscillations (*4.3.2):
If a particle in a linearly stratified, incompressible, inviscid
ocean is displaced vertically and then released, it will oscillate

with simple harmonic motion.

(a) By using a Taylor series expansion for the density p, evaluate
the equation of motion for a water particle oscillating as follows:

C(t) = €, cosqut)

(b) If you change the sign of

the density gradient which you TABLE 3.1
used for (a), what kind of
solution is obtained for the Stability as a Function of Depth

equaticn of motion and what

would happen to the water \ . 8 -1
particie if it is displaced Depth (m) 2 19 (em )
- .? : .
vertlcally. | 53 | 0.0
(¢) For a compressible ocean 100 ' 0.0
A4 . ) 150 | 1460.0
N =\g@E - &) with 200 - 895.0
c 400 238.0
E = = <= (Stability, usually 97.4
p oz _ 8 800 97.4
reported as E - 10 ). 1000 68'2
1200 45'4
Compute the Brunt-VHisHIY- 1500 31'2
frequency W from stability 2000 11'7
values given in TABLE 3.1, 2500 "

How important is the incom-
pressibility term?

(d) Describe qualitatively to what extent a neutrally buoyant Swallow
float follows vertical internal wave motion, if the compressibility
of the float is larger, equal, or less than the compressibility of
seawater (ncglect inertial effects).

3.2 Kinematics

EXAMMLE 3.2.1  Dead Reckoning

* (&) Show that surface currents can be computed from the following:
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The noon position of a ship was determined by Loran as 52°25'N,
42°16'W. The course for the next 24 hours was 215° true and the log
showed that 225 sea miles had been traversed by the time that the
noon position for the following day was determined to be 49044'N,
46722'Y, ; :

(b) What uncertainties are involved in this type of calculation?

EXAMPLE 3.2.2 Relative Current Measurements

Current observations were made from a drifting ship at the equator,
and the following results were obtained:

100 m
188 cm/sec, 101° True
50 em/sec, 315° True

Depth of meter
Current recorded by meter
Ship's drift

(a) What was the actual current at 100 m?

(b) Give an example where this may have been observed.

EXAMPLE 3.2.3. Periodic and Nonperiodic Surface Currents {*¥4.5.3)

Observations of the speed and direction of surface currents were
made routinely from a lightship in the North Sea. TARLE 3.2 gives
one day's results averaged over two-hour periods. A moderately
strong shouth wind was blowing at the time the observations were
made,

(a) Using square millimeter graph paper and a suitable scale, draw
2 progressive vector diagram of the currents.

(b) Deduce from your diagram (i) whether the'periodic current is
tidal or inertial; (ii) the directiom and strength of the mean
. flow; (iii) the probable cause of the mean flow.

(¢) Assuming that the mean flow was constant during the period of
observation, subtract it from the observed flow and plot the re-
maining current vectors from a common oerigin. Join the endpoints
of the rose,



TABLE 3.2

Surface Currents Observed from a Lightship_in the Horth Sea

_ Current

Time Directicn Speed
(Hours) (Degrees) ' (Knots)
6 - 2 20 1.0

2 - 4 _ 60 6.9
4 - 6 ' 90 0.7

6 - 8 : 130 0.4
8 - 10 : 180 0.2
10 - 12 230 0.2
12 - 14 0 0.5
14 - 16 : 10 6.9
16 - 18 ' 20 1.0
18 - 20 80 - 0.6
20 - 22 170 0.4
22 - 24 ' : 220 0.3

EXAMPLE 3.2.4 Equation of Continuity
Derive the continuity equation for a rectangular prism of fluid.

How doss the resulting equation simplify for an incompressiblie-
fluid?

EXAMPLE 3.2.5 FEstimation of Vertical Velocity
The mean horizontal current components (ct/sec) in the upper 50 m of
an ocean have been averaged over five-degree squares and are shown

in Figure 3.1..

(2) Estimate the vertical velocity at 50 m in each of the five-~degree
‘squares,

(b} What assumptions have you made, and why may your answer be erro-

neous?
Y
o ' : 5.6 x.107cm
25 > 25 -
: V1
. 30 . ' 25 . X
5 % IO7 cm
&/ﬂ\‘w :
Fig. 3.): Horizontal current Components, averased for four S5-degree

squares,
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EXAMPLE 3.2.6 Flow Through a Comstriction

Water of constant density flows in a canal which has vertical sides
and a flat bottom, but varies in width as shown in Figure 3.2. \Using
the continuity equation and Bermoulli's equation, calculate the depth

and the velocity of water inm the constriction. (You should obtain
a cubic equatiomn.) ' '

W, =20m W, =10m

— v

U =2m/sec | /—_\\
A7 .

Fig. 3.2: TFlow through a constriction (H=water depth).

EXAMPLE 3.2.7 Inflow into the Red Sea

Assume the Red Sea to be 2,000 km long, the Suez Canal closed, and
the Straits of Bab el Mandeb to be one-tenth the average width of
the sea., If surface evaporation exceeds precipitation by 1 cm/day
and incoming flow is confined to the upper 50 meters, calculate the
speed of the flow in cm/sec.

3.3 Dynamics

EXAMPLE 3.3.1 Acting Forces

(a) Separate the forces which generate and which influence the motion
of a particle on the rotating earth into distinct categories and
give examples of their effect on motion in the sea (excluding tides).

(b) Which of these forces can gemerate currents in a (i) homogeneous,
frictionless ocean, (ii) homogeneous ocean with friction, (iii) in-
homogeneous, frictionless ocean, (iv) inhomogeneous ocean with
friction, (v) two-layered ocean with friction?
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EXAMPLE 3.3.2 Surfaces of Equal Depth and Equal Potential (*3.1.2)
The dynamic depth of a level surface is glven by

p = £ (dyn. m.)

10
where g,= 9.78049 (1 + 0.005288 sin 2¢ - 0.000006 sin *2¢)[m/sec?]
g = g, +2.303 . 10—6 .. z. What happens to a sphere which is located

near the equator (a) on a surface of equal depth, and (b) on a sur-
face of equal potential? Discuss both cases for a nonrotating and
for a rotating earth. (Assume the surfaces to be plane, rigid, and °
frictionless.)

EXAMPLE 3.3.3 Coriolis Acceleration (%*4.4.4)

(a) A plumb of mass m hangs on a 2 meter cord inside an airplane
traveling eastward along the 60°N parailel of latitude at an alti-
tude of 1,000 meters and a speed of 1,000 km/hr. At what angle to
true vertical does the glumb line stand and in which dlrectlon?

What would happen at 60 N if the airplane travels along the 0° merid-
ian in a southernly direction with the same speed and altitude as
before?

(b) What would happen, under momentarily the same condictions, to the
plumb line in a free flying projectile having a speed of 3,000 km/hr?

{c) A particle of mass M travels due east at the equator with speed
'y. . It is momentarily displaced to a position 1,000 meters north
of the equator. Describe its subsequent motion (fr1ct10n1ess)

EXAMPLE 3.3.4 Deflection of a Moving Body

A billiard table is 250 cm long. Two billiard balls, 4 cm in diam-
eter, are placed at oppesite ends of the table., WNeglecting friction,
how fast does one ball have to be propelled initially directly toward
the other in order to just barely miss the second ball due to the
Coriolis force? The table is located at 43°N (f = 10~% sec”l). =
(Acc. to Hess (1959), Introduction to Theoretical Meteorology. )}

EXAMPLE 3.3.5 Inertial Motions

The inertial period due to the earth's rotation is defined by

.- no 12k
- Ié|sin ©® °f Sin o

(a) At what latitudes are the inertizl periods in resonance with the
semi-diurnal lunar tide, MZ’ and the diurnal lunar tide, 01?
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(b) What is the shortest inertial period that an ocean current can
have? o

(¢) Give graphically the distribution of irertial periods for lati-
tudes between the equator and the pole. '

3.4 Equation of Motion

EXAMPLE 3.4.1 Equation of Motion

The equation of motion is given by

-> > -+ >,
%g+?-ﬁ—2ﬁxv=-%vp+gk+lc+3

(2) Give the component equations of motion.

(b) Simplify the equation of motion for (i) geosirophic, (ii) ageo-
strophic, (iii) cyclostrophic motions and sketch a vector diagram
for each case. : .

(¢) Explain, by means of a sketch, vwhy the velocities in current
fields with equal cvclonic and anticyclonic curvature are different,
although the pressure gradients are identical. '

EXAMPLE 3.4.2 Geostrophic Motion

Assuming that the Coriolis parameter can be expressed as a functien

of the y~coordinate, find the equation of the streanline of a parcel
of water leaving the equator towards the northern hemisphere with a

constant pressure gradient per unit mass (Vp) directed from south to
north. There is no friction. :

EXAMPLE 3.4.3 Vorticity

el . . _ Iy _ Oov  du
Vorticity, {, is defined ( = (curl V)z =3 3y

The sign of { is determined as follows:
for rotation contra solem § > O
for rotation cunt sole £ <0.

N . ' v > :
By means of a sketch, show hew it is possible that Sc 2 0 for u =0,
. : ox
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FEXAMPLE 3.4.4 Vortijcity Equation, Potential Vorticity

a) Derive the "vorticity equation”
Y eq

<)

HU+O+ U+ 7% -T=0

relative vorticity, ({ + H

Nl

whare 4

absolute vorticity from

du . _ 13 dy ")
dt fv = p ox ac T fe=- p 3y

(b) Using the continuity equation, derive from the vorticity equa-
tion _ , .

d f+ +
-0 e BE.

D= 0 resp. (potential vorticify)
for a homogeneous layer of depth D.

(¢} Consider the possible changes of a ecyclonic eddy formed off °
Valparaiso and carried away by the Peru Current. What would happen
to an anticyclonic eddy under the same circumstances? '

(d) A frictionless turntable is mounted on a railwvay car which runs
on a meridional, frictionless track from the north pole to the south
pole: (i) give a qualitative description of the motjion of the turn-
table; (ii) what would happen to a motionless car at 60°N if the '
turntable were rotated cum sole? (Acec. to v. Ary, 19562.)

3.5 Applications of the Equation of Motion

EXAMPLE 3.5.1 Geostreophic Current Calculation

(a) Derive the following two expressions for geostrophic current

calculations;
c, - & (A
g f I, “p = const.
10 .
cg = Fn LD, - (D))

geostrophic current velocity component normel to a sec-

where ¢
B tion between twe hydrographic stations A and B.

L
AD

If

distance between hydrographic stations A and B.

Hi

dynamic depth anomaly of the reference level,

(b) Compute cg relative to the 500 dbar-level, where no motion is
assumed. Use L = 50 kilometers
(ELD)A 0.837 dyn m

(&),

It

© = 30°W

0.941 dynm
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_ Computé the corresponding inclination of the sea surface between A
and B in cwm/km, . :

EXAMPLE 3.5.2 Geostrophie Current Distribution

From TABLE 3.4 calculate the geostrophic velocities at the given

~depths between successive pairs of stations.

Draw a vertical sec-

tion (profile) of velocities between Australia and Antarctica.
Assume a level of no motion at 3000 meters. '

TABLE 3.4

R. S. DISCOVERY Stations along 135°E Between Australia and Antarctica

Dynamic height in centimeters at Station NumbersS.............

z (m) 895 894 893 892 891 890 889
0 000.0 000.0 000.0 000.0 000.0 000.0 { 000.0

250 034.7 | 033.4 033.1 028.5 024.1 018.8 017.3
500 065.3 063.5 061.3 051.0 041.7 031.1 029.0
750 095.0 093.6 085.4 069.9 055.8 041.7 | 039.0
1,000 120.7 121.2 166.1 085.8 067.9 051.3 048.3
1,500 158.3 164.0 139.2 111.8 088.7 068.8 065.,0 .
2,000 185.7 194.2 164.6 134.,0 107.6 085.7 081.2
2,500 208.5 219,2 186.3 153.7 125.1 101.0 096.6
3,000 229.7 242 .4 207.4 172.9 141.6 115.0 110.5
Latitude | 43°16's | 66°32'S [ 49°37'S [ 52°49's {56°03's |59°05's |61%45's

Fl

E¥AMPLE 3,5.3 Estimation of Surface Currents

From a rapid BT-survey along 30°N latitude, &ou are asked to make
an estimate of the surface layer current velocities. How would you
proceed, using the following results and assumptions given in

Figure 3,3? Calculate the mean velocities between A and B and B and C.
WEST . EAST
A - ] <
)

Onm 1 Fa) 30 40 =0 L.+ 'Tl
| 1

o Por oS

Fig. 3.3: Distribution of
" ] //;f pycnocline depth

m—:\ ' “ along 30°N.
] -

PrrLOZF
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t Currents (*2.6.1)
According to Ekwman,

the velocity distribution of a pure drift current
is given by '

L
us=VyV, - e b, cos (457 - %E)
- Dz
: D 3 0 nZ
v=1V, e - sin(as” - B—)
2A _ '
where D ;?E (Depth of frictional influence)
— T
0 =
EZpJAz
where T = windstress in the y-direction

(a) If the coefficient of eddy viscosity has relative values of
Az = 4 and Az = 16 respectively, how is the value of D affected? .

(b) How are direction and speed affected at z. b?
(c) Find the expressionslfor the transport components in a wind-
driven current between the surface and the depth of frictional 1nf1u-

ence by integration of the velocity components.

(d) Using the results from (c) on the direction of the mass trans-
port in 2 wind-driven current, derive a schematic diagram of the
meridicnal distribution of the height of the sez surface between
45°N and 45°S from the corresponding windstress distribution.

Relate this diagram to the observed surface current systems.

EXAMPLE 3.5.5 Sverdrup-Relation

Equations (1)

-f4 = -P 4+ T
y x " Tx
fM = -P + T
% y y|z
M + M = {J
XK yy

Z=O F

(3) are the basis for the so-called Sverdrup-Relation.

1)
(2)

3)

Familiarize yourself with the given system of equations.

(2) Devrive the Sverdrup-Relation.

(b} ¥hich are the underlying assumptions made whon compared to the

LOﬂﬁlCLQ equations of motion?

{c) Discuss the balance of terms in the Sverdrup-Relation apnd indi-

cate winere this relation nay he

valid iuw the real ocean.
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(d) Split M, and My into an Ekman-transport component and a geo-
strophic tramsport component and discuss interplay between both com-
ponents. ' '

EXAMPLE 3.5.6 Wind-driven Ocean Circulation

It has been shown that the wind-driven circulation in a-hbmogeneously
stratified rectangular ocean basin of constant depth H can be approx-

imated by
3T
Yer,y) ~ X0 - R
where ¥ = transport function
X(x) = asymmetric distribution in East-West direction
Tx = zonal windstress component, x = eastward, y = northward

The theory shows that the number of gyres depénds on the meridional
distribution of the zonal component of the windstress. Assume a
pertinent driving windstress to be of the form '

¥y, North

A

T = -TD * cos %H
Fig. 3.4: b

X

where b given in Fig. 3.4,

wX, East
© 7

Sketch the distributions of the curl of the stress and the corre-
sponding streamlines for the cases n =0, 1, 2,

EXAMPIE 3.5.7 Western Boundary Currents

The function

kx
= 2

X(x) = -J,;e

represents the theoretical distribution of meridional transport

through the western part of a model ocean where k= 3B B = 3f
T J A T oy

o 2 - : .
For A, = 5 x 107 cm sec 1, this distribution is given in Figure 3,5,

. cos(gkx ---g) + 1

A

WSS FRANSOGET
W EAmTRany
wmity 1.0

Fig. 3.5: Plot of function X{x)
giving west-east vari-
ation in transport.
After Stommel (1965).

Q.8

00" * o
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where part I may be thought to represent the Gulf Stream and part II
a countercurrent.

Discuss how amplltude and w1d5h would vary with values:
A = 106 cm /sec A = 109

/sec

EXAMPLE 3.5.8 Topographic Influences on Zonal Currents

From the vorticity equation (see Example 3.4.4) one obtains the
following expression

L@ v

with B = %yi

(a) What assumptions were made to derive equation (1)?

(b) Discuss the horizontal field of streamlines in a zonal flow,
crossing a (N- S 1nfin1te) barrler as shown in Figure 3.6,

=
v Y VY

m/j%W

Fig. 3.6: Zonal flow over a barrier.

(c) Give examples of the occurrence of this type of current deflec~
tion {(consider also atmospheric flows).
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CHAPTER 4, WAVES AND TIDES

4,1 General Properties and Classification of Waves

EXAMPLE 4.1.1 Basic Properties of Harmonic Waves
Two progressive harmonic waves are described by
Bt (x,t) = a; sin (uyx - wyt)

€2 (x,t) = ap sin (Hzx - wat)

(a) Superimpose both waves and specify My, Hp, @y, Wy iIn order to
obtain a progressive wave and a standing wave (take a; = ag).

(b) Défine the terms phase velocity and group velocity and derive
their analytical form using the results from (a).’

(¢) Show that the total energy per unit area of a progressive wave
is twice that of a standing wave.

EXAMPLE 4.1.2 Classification of Surface Waves

From the theory of waves at the air-sea 1nterface, the fOllOWlng
expression for the phase velocity c can be derived

g,_g_“p-p o 21'rt 21
- [;; p+ p’ X anh 3= X H

(p = dénsity of water, p’ = density of ajx, o = surface tension)

(a) Find the'phase velocities for capillary waves, short waves, and
long waves and state their dispersion behavior.

(b) Find analytical descriptions for the vertical distribution of
- the orbital paths of water particles for free harmonic short and
long progressive waves if

-# a cosh #(z, - H) sin (nx, - wt)

1}

u

W = a sinh ®(z, - H) cos (ux, - wt)

il

(%, and z, may be used instead of x(t) and z(t) due to the assump-
tion of small amplitude waves)

(¢) Find analytically the vertical and horizontal distribution of
the orbital paths of water particles for short and long standing

waves 1f
u = -1 a cosh n(z, - H) sin Hx, cos wt

“ a sinh u(z, - H) cos Mx, cos wt

W

T it e, S ST

;
et mad
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(d) Illustrate the results obtaincd from (b) and (c) by simple graphs
and give examples of the different type of waves. '

EXAMPLE 4.1.3 Classification of Internal Waves

Internal wave motion is frequently described by a second-order par-
tial differential equation for the vertical velocity component W.
For sinusoidal internal waves of frequency @ in an incompressible,
stably stratified ocean, without mean current the character of the
differential equation is determined by the factor

N (z) - of
o - 2

q(z) =

For q(z) > 0 (hyperbolic case), the solutions of the eigenvalue prob-
lem for w represent "ordinary' internal waves, j.e., the vertical
amplitude distribution of w reaches its extremum in the interior of
the interval 0 < z £ H. If q(z) <0 in any depth intervals

| 0 <2z Shy, hg £z =H, (elliptic case), the solution yields an

: exponentially decaying amplitude within these intervals and the
resulting internal wave motions are frequently called "improper.”

% (a) Find the limiting periods for ordinary internal waves in the
. cases w $ f.

: (b) Explain the following observations: Bj. Helland-Hansen .
- observed in the latitude zone between 30°K and 74°N in the Atlantic
Ocean semidiurnal internal waves at all depths, whereas he observed
" diurnal internal waves only in the deepest layers. '

(¢) Illustrate the results from (b) by a z vs. w plot. Use arbi-
‘trary amplitudes for w.

(d) Long and short internal waves are usually characterized by -
N2>> uP and f2 << u®. What assumption makes this classification
meaningful?

i EXAMPLE 4.1.4 Wave Recording by Pressure Sensers
Assume a pressure gauge 1is mounted on the sea floor.

: (a) List the phenomena which will be recorded. For each of the
{ phenomena listed, name a location where extremc values will be

i observed. (No restrictions to length of record and instrumental
' accuracy.)

(b) Use the Bermoulli equation

c? , B

3% o " gz = 0 ~ {p, = constant)
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and the velocity potential ¥ for free pregressive, harmonic surface
waves
¢ = a cosh x(z - H) o1 (nx - wt)

to derive an expression for the pressure p at the pressure gaﬁge.

Is there any frequency dependence of the recorded amplitudes of
long and short waves? :

4.2 Surface Waves (Nontidal)

EXAMPLE 4.2.1 Short and Long Surface Waves

Consider a train of waves with period T = 10 sec. The speed with
which.-a wave travels in deep water is given by

- [

(a) Find the speed of the wave in deep water.

(b} Find the wavelength in deep water.

(c) Using the approximation that the speed of a wave in shallow

water is given by ¢, =.{gH'show that the wavelength in shallow water
is less than the wavelength in deep water for waves of the same
frequency. ' :

(d) Using

—-
c =f§ tanh (#H)

compute c/c,. and ¢/c; for ratios H/A = 0.05, 0.075, 0.10, 0.25, 0.50.

Plot c/ec, and c¢/c; against H/X on graph paper and find from the

curves to what ratios H/A, ¢,, and c; can be used instead of ¢, per-
mitting a 5% error. ' '

(e) Show why surf reaches a sloping beach parallel to the shore.

EXAMPLE 4.2.2 Energy Dissipation

(a) The empirical formula E_ = 2 Aznzgﬁz gives approximately the loss
of the total energy for sea waves 3f the steepness 6 = 2 a/A due to
the turbulent viscosity.

(i) Give an example which supports the above representation.

(ii) Describe qualitatively the decay of a wind generated wave
field after the wind suddenly stops blowing.

{b) A wave train approaches a gently sloping beach.

Assuming wave
period and forward fl

ow of energy to be conserved, discuss qualitatively

[P —— LS
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the process of nearshore energy dissipation of ocean waves. Make
use of the phase-velocity relation for shallow water waves

¢ =fetz+m)

which is valid for X\ >> H, but not necessarily 2a << H.

EXAMPLE 4.2.3 Sterm Surges .

An observer notices the arrival of a dispersive train of waves from
a storm at some distance. Ten hours after waves of 15-second period
are observed, waves of l4-second period are observed. Assuming a
point source in space and time (2) how long ago did the storm occur?
(b} at what distance from the observer?

EXAMPLE 4.2.4 Seiches

Figure 4.1 shows time series of sea level variations for different
locations in the BRaltic Sea (location 1: northeasternmost gauge:
location 8: southwesternmost gauge, see convenient map).

(a) From ¢ = A {(where T = period of the basic eigenoseillation of
an enclosed rectangular basin of length.f and mean depth H), find
T as a function of . and H. :

(b) Interpret Tig. 4.1 and use Merian's formula for an estimation
of the mean depth of the Baltic basin (use £ = 1,450 km; estimate
T from Fig. 4.1).

Fig. 4.1: Sea level fluctuations
at eight locations in
the Baltic Sea. From
Dietrich (1963).

4,3 Internal Waves (Nontidal)

EXAMPLE 4.3.1 Internal Boundary Laver Waves

Assume two superposed liquids of density py and pp {(ps > py) which
are otherwise unlimited. If the oscillations of the boundary are
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described by - a cos ux eiwt

the velocity potentials §; of the upper and the lower layer are given
by '

/s

- =Nz iwt
$ a; e Cos MX e

I

Hnz iwt
§5 = a5 e cos mx e

where the origin of z is at the mean level of the boundary and
-day = Ha; = ita '
(2) Using the definition of the velocity potential, V= v#, sketch
the distribution of streamlines for am instant t = t, in the x,
z-plane. (Using u/w = Ax/Az, draw the streamlines for several
" locations in the x, z-plane.}

(b) From (a) explain the phenomenon of "dead water” (disregard the
infinite thickness of the upper layear).

EXAMPLE 4.3.2 Scaling Considerations (*3.1.4)

The simplest linearized equation describing internal waves is given

by
@y W () - u?;{ R
dzz- + i (DE H W‘ = 0

i(ux -~ wt)

with w = W(z) e

{a) Defining a local vertical length scale of the motion

1.1 35
l"f l
I = | —#

and a local horizontal length scale
_ 1
Ly = % _
find an expression for LH/L.z from the given differential equation.

(b) Discuss the spatial distribution of low frequency (W << N{z))
and high frequency (w = l(z)) disturbances.

EXAMPLE 4.3.3 Method of Qbservation

The vertical wvelocity component w is frequently used for the amalysis
of internal wave notions. However, the direct observation of w
involves numerous complications. Therefore, w is indirectly deter-
mined usine a conservative parameter Y(x,y,#,t}, e.g., Lewperature,
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salinity, density, etc.

(a) Derive 1)
¥ 7 (x,y,z,t)
W= - ©3 ot — - from EX&EL%;EAEl =0
oY T (x,y,2) ¢ '
2

and discuss the assumptions made. Use

¥e,y,7,0) = YO 00y,2y + ¥ W g0 1

observation mean - perturbation
where [Y(l)[ << ]Y(O)]

(b) Try to explain why the choice of ?(0) and, consequently, ?(l)
depends on the spatial scale of the problem to be investigated,

(c) Which phenomena are likely to cause differences in computing w
from the depth variations of an isoline Y = const compared to mea-
suring the variations of ¥ at a fixed level z = const? :

EXAMPLE 4.3.4 Energy of Internal Waves

The total energy per unit area of internal gravity waves of order n.
is given by '

1 .-
Eq =‘§ng° agH

For surface waves it was found that

1 .
E, ""Z'Pgaf

(é) Assuming the maximum internal wave amplitudes to be 1/10 of the
depth interval available (a, = H/10n), find the ratio of the maxi-
mum energies of internal waves of the order 1 to 5.

2, = H/20n, H = 105cm, Ty = pg - Py s Py = Po = 4:1077 g em™”,
o :  pH

(b) Find the ratio E./E, for n = },..};5, agéuming a, = 100 gm,

4.4 Tide Generating Forces

EXAMPLE 4.4.1 The Earth-Moon System

(a2) Assume the masses of earth and moon to be concentrated at their
center points. Compute the approximate location of the center of
mass of the earth-moon system, earth's mass = 6-10 ?g, moen's mass =
?.3-10253, distance = 3.84'1010cm.
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(b} Explain graphically the notation "revolution without rotation"
for the movement of the eartn-moon system around their common cenkber
cf mass, (Use a meridional cross-section of the earth's sphere and
show its location and orientation for several instants. Draw the

. tracks of two points fixed on the ¢ross-section,)

EXAMPLE 4.4.2 Tidal Potential

The tidal potential is represented by

v = (% _1 _rai cos 6)

R R2
where <y = gravity constant
M =~ mass of celestial body
r = distance gravity center celestial body - observation lo-
cation earth - '
R = distance gravity center celestial body - gravity center

earth

r.= distance gravity center earth - observation location earth -

3]

]

zenith angle of the celestial body at the observation
location :

{2) Show by an expausion of r into powers of (ﬁi), th%t the third-
order term V 3), which contains the third powers of (Ki), is given

by (3) |
v =K+ (3 cos 6+ 5 cos 36) 1)
where )
K = ﬁ - -1;2—
& R

(b) Assuming a spherical earth with radius ¥; and a mean distance
Rearth-moon = €, derive K = g-' sin Y using-the tidail constant
3 r? 3 2 -2
G(ry) = @ vM 3= 26.2 + 107 em“sec _ : (2)
c .

and the parallax Y of the moon. (Parallax in this case is used from
the definition of the "equatorial horizontal lunar parallax.™)

(¢) Using (1) and (2) and ¥ = 577, compute the difference in height
between zenith and nadir high tides of the lunar equilibrium tide.

EXAMPLE 4.4.3 Horizontal Component of Lunar Tidal Zorces

(a2} By means of a diagram of sufficient éccuracy, sketch the distri-
butien of the horizontal component of the lunar tide gonarating
forces at tha earth's surface, Assumz the moon to be in the zenith
at 25°N latitude,

L LA

[T NP

Lt g g



(b) U51ng the dlagtam obtained 1n (a), plot (qualitatively) fox
latitudes 0°, 25° N, 60° N, and 90°N central vector diagrams of the
horizontal componeuts at 0, 3, 6, 9, and 12 hours lunar time.

EXAMPLE 4.4.4 Magnitude of Tidal Forces (*3.3.3)

(a) Compare the magnltude of the horizontal component of the tide
generating forces, FH’

(i) to the wind stress, which acts on the sea surface apd is
empirically descrlbed by

= 3,2 x 10-6 Wz'dyn f.:m'—2
(W - windspeed at a height of 10 w, given in cm Secnl)

'(ii) to the Coriolis force, whlch acts on a mOV1ng partlcle and
is described by

> ' -2
C = 2|Q| sin @ - VO *m g em sec

_wWhere m = mass B
current speed, for this example take the speed

Vv =
® of the wind- driven current, which is given by
vo= AW o 26 1072
o [
ysin G

(iii) to the force due to a horizontal pressure gradient in the
ocean, which causes a oeostrophlc current of the speed V,
Use W = 10 m/sec, ® = 30°K and report 211 forces in dynes

() Why is the vertical component of the tide generating forces
negligible for oceanic tides? Is this also true for the tides of
the atmosphere and the solid earth?

4,5 Analysis of Tidal Observations
EXAMPLE 4.5.1 Characteristic Features of Tidal Records

Figure 4.2 shows parts of tids pauge records from four different
locations.

{a) State the type of the tides and name one characteristic location
for each of the examples given.

{b) Mark the inequalities you can recognize in Figure 4.2 and give
their rel tion to moon phases as well as their delay.
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Fig. 4.2: Tide gauge from four different geographic locatioms.
From Dietrich and Kalle (1963).

Apogee point of moon's orbit

Perigee point of moon’s orbit

Maximum northern declination of the moon
Maximum southern declination of the moomn
Time when moon crosses the equator

Abbreviations:

I¥

H]

Loz g
It

EXAMPLE 4.5.2 Harmonic Analysis of Tidal Currents

TABLE 4.1 gives the results of hourly current observations from a
North Sea lightvessel. )

(a) Plot the observed values as a sequence of hourly current vectors
(progressive vector diagram), state the main period observed and
find the residual current components graphically. Assume the resid-
ual currents to be constant during both tidal cycles.

(b) Plot the observed values in separate u/t and v/t-diagrams.

(¢) Compute amplitude and phase of both u- and v-components for 24.8
and 12.4 hour periods by harmonic analysis. Divide the interval of
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24.8 hours = 27 into 2n = 24 equal'parts of %E each. Read the veloc-
ity values u; and vy at Y = Y, + Zﬁ'- for“} = 1,....2n., Compute

separately for u and v
éu 2n u |
{“}: z {1}cosv‘i’:,v=0,1,2
avv _1 Vi )
. 2n
f’“"}rl—z {03 sin vy
qu n i=1 vy

and from these expressions amplitude Ay = a2 + b2, and

phase ®y = tan-l El . {The analyzed period is T, = % - 24,8 [h].)
: - v

= L

(d) Compare the results of the harmonic ana1y51s with the results
obtained in (a) and (b).

TABLE 4.1

Hourly Current Observations from a2 lightvessel in the North Sea

‘Local time  N-comp E-comp Local time K-comp E-comp
th) (cm sec 1) (cnm sec™ ) (h) (cm sec” ™) (cm sec )
0 - 5.3 4.1 13 7.3 10.0
1 15.5 16.0 14 i8.6 16.9
2 25.5 22.9 15 22.5 18.9
3 24.9 1 22.8 16 16.2 1.7
4 19,2 17.2 17 9.8 3.8
5 7.8 11.9 18 - 0.4 6.3
6 - 9.1 5.5 19 -17.9 - 0.6
7 ~26,2 - 6.2 20 -15.9 - 5.5
8 -39.6 -17.8 21 -37.3 -10.1
9 -35.1 -21.3 22 ~-30.6 -11.0
10 -30.6 - 4.9 23 -23.8 - 4.7
11 -21.6 - 3.1 24 - 8.7 - 3.5

t 12 - 6.4 + 3.1 25 + 3.2 + 2.8

EXAMPLE 4.5.3 Current Ellipses (%3.2.3)

TABLE 4.1 gives the results of hourly current observations from a
North Sea lightvessel.

{a) State the mean period observed and find the residual current com-
ponents numerically. Assume the residual currents to be constant
during each of the observed dominant cycles,
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{b) Eliminate the residual currents from the observatibns given in
TABLE 4.1, and plot the resulting hourly vectors originating all
from the same point (central vector diagram}.

(¢) Assume that the results of a Fourier analysis of current obser-
vations revealed

u = u cos (we + 9,)
21 L
vV = v, cos (wt + p3), w =, T = period

Determine analytically the length and orientation of the major semi-
axis and the minor semi-axis of the current ellipse (find the nor-
malized equation of the ellipse by rotating the coordinate system).

(d) Using the results of (c) and the harmonic constants derived for

the semidiurnal tidal component in Example 4.5.2, draw the computed
tidal ellipse and compare it with the graph obtained in (b).

EXAMPLE 4.5.4 Harmonic Synthesis -
For the port of Nereus on the African coast, the harmonic constants

of the principal tidal components are given in TABLE 4.2. The
tidal height £ may be computed from '

€ = My cos (-—f_" t+V0 +K~I)
Mp My P

' 2
+ Sp cos C;E~ t+ V. + K )
Sz Sz

£t +V +
o] KKl)
K

27
¢
Ky

+ K; cos

(a) What was the height of the tide at 14.30 hours January 3, 1969?
(b} Was the £ide rising or faliing at 14,30 Jaguary 3, 19697

{c) What was thé time of high tide and low tide for January 3, 19597
(d) Plot hourly tidal componentslfor 0 to 24 hours, January-3, 1969,

add them graphically and use the result for checking (a) - (c).
Are the tides mainly diurnal, semidiurnal, or mixed? -

TABLE 4.2

Harmonic Constants for Port of Nereus

Feried T VO at 0000 hrs

Tidal - Phase Amplitude
Constituent I K fn cm hrs Jan. 1, 1969
M + 60" | cos 72 12.42 273
S + 72° | cos 50 12.06 20°
K, 4+250° | cos 48 23.93 - 92°
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EXAMPLE 4.5.5 Barotropic and Baroclinic Tides

The results of a harmonic analysis for the Mp-period of curreat .o,
servations at 30°N, 28°W are given in TABLE 4.3.

{(a) Do the observations allow for aun interpretation in Lerme ot o
barotropic tide only? Give the reasons.

(b) The observations given in TABLE 4.3 were interpreted in te:- -
of barotropic and baroclinic tidal waves (0-order internal ot
equivalent to barotropic mode). According to the concept ot fnte:.
nal wave motion, to be eigen oscillations of a vertically utrartsre.
ocean, the vertical distribution of the v-amplitude due to har-.t,
internal waves at the observation site can approximately b sbwo .

m
_ nn{H-z)
v{z) = v, + %Ll v, cos T

the indices o and n indicating the order of the barotropic anl
baroclinic modes; H = 294 m,

Using the results of am approximation of the observed currenrs tv
zero and first-order Mp-internal modes given in TABLE 4.3 for the
depth z = 19 m, plot the vertical distribution of the computed
zero and first-order v-amplitudes and compare their sum to the
observed v-amplitudes. Complete TABLE 4.3.

TABLE 4.3

Harmonic Analysis for the Mp-period

Mp -~ Tidal Current Observations Approximations for v-compunent
Ampl. Phase 0.-order | 1l.-order | O.+i.-0roet
(cm sec )} i(degr.) mode mode mode =
z (@) u @y v Qv | Vo Wy, | V2 Py v
1¢ 20.4 316 19.8 257 {16.0 267 | 6.1 220 7 :
151 17.1 339 17.2- 261 ? ? ? ? 1 v
283 10.4 358 12.6 292 ? ? ? ? ? ?

é 4.6 Tides in the Ocean

(a2) State the main objection to the equilibriuw

(b} Wnat change of one of the earth's p
objection meaningless?

EXAMPLE 4.6,1 Equilibrium Tide

arameters would mtre
i Fuar
Take the world ocean's depth te B

n tide theery.

tho
i
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EXAMPLE 4.6.2 Tidal Waves in the Ocean Basins

(a) Why does the head of a tidal current vector in the ocean gener-’
ally follow an ellipse? Is this also true for the currents observed
during the passage of a2 tsunami wave?

(b) State the assumptions which lead to the generation of an amphi-
dromic point in a quadratic basin. Several amphidromic points are
known to exist in the real ocean basins, although the assumptions

for their generation seem to be rather restrictive. ' Give an explana-
tion, :

(c) How would you determine the location of an amphidromic point if
you have the facilities to measure (i) currents or (ii) surface ele-
vation at three different locations? Propose convenient arrays and
give the reasons. ‘ ’

EZAMPLE 4.6.3 Tides in Adjacent Seas

For the tides of adjacent seas or bays, three different types of
oscillations must be considered: (i) eigen-oscillations, (ii) co-
oscillating tides, (iii) independent astronomic tides.

(a) Wnat causes the three different types of oscillations, and what
factors are decisive for their periods and amplitudes?

(b) What are the differences between (ii) and (iii) at the entrance
of the adjacent sea or bay?

(¢) Give one axample each of where (i) is of large influence and _
where (ii) is of small influence on the tides of the corresponding
areas, .

EXAMPLE 4.6.4 Topographic Influences on Tides

(a) Idealize the English Charmel to be a channel of a width of 100
km and of 2 uniform depith of 80 m. Assume & semidiurnal tidal wave

is propagating througn the channel in northernly direction. What
is the difference in tidal ampl itude between the "Engllsh” and the
"French'' coast?

(b) What important factors determine additionally the actual distrl—
bution of tidal amplitudes in the English Channel area?

(e) Although the horizountal components of the tide generating forces
are of the order of 1077 x g, the tidal current vcloc1t1eq over shelr
areas are of the order of 1 kns Give an explanation.
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CHAPTER 1
EXAMPLE 1.1.1

Fofonoff, M. P. (1962): Tuc Sea, Vol. 1, "Physical Propercies of
Sea Water," Tnterscience Publ., pp. 4-6, :

EXAMPLE 1,1.2
(a) Fofonoff, N. P. (1962): Loc. cit, Example 1.1.1, pp. 8-10.

(b) T = 4.70°C, S = 34,74 % ; 0, = 27.52. Density is not a linear
function of salinity and temperature, . :

(c) 76 cm
EXAMPLE 1.1.3
(a) Fofonoff, N. P. (1962): Loc. cit. Example 1.1.1, pp. 12-17.

(b) Depth (m) ™¢ - §8°¢

2,000 2.25 2,10
3,000 1.64  1.41
4,000 1.60 1.27
5,000 1.72 1.26
5,000 1.86 1.25
7,000 2,01 1.25
8,000 2.15 1.23
9,000 2.31 1.19
10,000 2.48 1.17

Apparent instability if T is used.

(c) Flow into Cayman Trench over an approximate sill depth of I,BOOm;
EXAMPLE 1.1.4 | |

(a) Fofonoff, N. P. (1962): Loc. cit. Example 1.1.1, pp. 17-22.

(b) T = -1.350, S = 24.7 %

Dietrich, G. and K. Kalle (1963): General Oceanocgraphy, Incer-
science Publ., pp. 535-57. :

EXAMPLE 1.2.1

: e, . - - - -
(a) » = (o + ik)?(l - upy; 4540:10 ? dbsr L, 472510 7 dbar I-
I p(lp ! ;
(b) Dietrich, G. aud . Kelle {1953): Inc. cif. Buample {.1.4,
pp. 38-73.
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(c) 960 cm3
(d) 1483 m/sec; 1454 m/sec. .
EXAMPLE 1.2.2

(a), (b) Neumann, G. and W. J. Piersen, Jr. (1966): Principles of
Physical Oceanography, Prentice-Hall, pp. 48-51.

EXAMPLE 1.2.3
(2) Pressure, g, = 0.018 sec_l

(b) Neumann, G. and W. J. Pierson, Jr. (1966): loc. cit. Example
1.2.2, pp. 48-51.

(c) 86.7 km
EXAMPLE 1.2.4

(2), (b) o ' Relative

Time in seconds Time in seconds Absclute Errors in
Depth (m) using ¢ using 1500m/sec Error (m) Yo
| t = 2?14 E = 15005‘5-5 R = £:100
125 0.164 0.167 +2.25 - 4+1.3
175 0.230 0.233 +2.25 +1.3
350 0.462 0.466 +3.0 +0.9
750 " 0.997 1.0 +2.25 | 40.3
950 _ 1.265 ' 1.269 +3.0 +0.3

EXAMPLE 1.2.5

SUREACE SHIP ' SURFACE SHIP
N //
VoV v / ¥ VeV
] 2 ] 1 2
NN ////
a
hY \g‘/ N
;5 7777
~—— A&yféﬁy
—-Y
v T
2 .
SHADOW ZONE
(i} §=CONSTANT; 1, = 25°C, 1,7 t0°C (it} t = CONSTANT ; 5 = 20 %e ; 5,2 35 %o
{ND TOTAL RLFULECTION POSSIBLE) [TOTAL REFLECTION POSSIBLE SINCE 8 2 S0°)

Fig. 1.1: Answer to Example 1.2.5.
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EXAMPLE 1.3.1

{a) Attemuation = Absorption + Bcattering
pure water | molecular molecular
seawater molecular ! solution molecular soluti
dissolved dissolved. ution
suspended matter suspended matter

Equation describes only absorption for a specified wavelength over a
small depth range.

(b) Sverdrup, H. U., M. W, Johnson, and R. H. Fleming (1942);: The
Oceans, Prentice-Hall, pp. 82-83.

EXAMPLE 1.3.2

(a), (b) Neumann, G. and W, J, Pierson, Jr, (1966): Loc. cit.
Example 1.2.2, pp. 67-69. .

(¢) Predominantly foreward scattering (downward) occurs.,

(d) Oceanic water would match color of coastal water shifting towards
green-yellow, '

EXAMPLE 1.3.3
(a2) Planck's radiation law; assumption of black body radiation.

(b) 10 my, airborne sensing possible; space borne sensing hay be
influenced by 03—absorption. ’ -

(c) von Arx, W. S, (1962): An Introduction to Physical Oceanography,
Addison-Wesley Publ., pp. l44-146.

(d) Order of magnitude of effected layer is 1 mm.
EXAMPLE 1.3.4

(a) Dietrich, G. and K. Kalle (1963): Loc. cit. Example 1.1.4,
pp. 38-42.

(b) Gaul, R. D., Editor, (1963): Marine Science Instrumentation
VYol. 2, Instr. Soc. America, pp. 10, 19-24,

EXAMPLE 1.3.3

(2), (b) von Arx, W. S, (1962): Loc. cit. Example 1.3.3, pp. 260-279,

EXAMPLE 1.4.1

(2) Proudman, J, (1953): Dynamical Oceanography, Methucn, pp. 10i-107.



D=

{b) Sce ¥Fig. 1.2,

EXAMPLE 1.4.2

(2), (b) Hinze, J. 0. (1959): TuTrbulence, McGraw-Hill, pp. 13-22.
Defant, A. (1961): Physical Oceanography I, Pergamon Press, pp. 100-109.-

EXAMPLE 1.4.3
(a), (), (c) Proudman, J. (1953): Loc. cit. Example 1.4.1, pp. 111-119.
EXAMPLE 1.4.4 '

(a), (b) Pefant, A. (1961): Loc. cit, Example 1.4.2, pp. 393-398.

EXAMPLE 1.5.1

(a), (b) Dietrich, G. and K. Kalle (1963): TLoc. cit. Example 1.1.4,
pp. 38-57. . o

{c) North Sea no; Baltic Sea yes.
EXAMPLE 1.5.2

(2), (b) Neuman, G. and W. J., Pierson, Jr. (1966): Loc. cit.
Example 1.2.2, pp. 82-84.

EXAMPLE 1.5.3

(a), (b), (c) Neuman, G. and W. J, Pierson, Jr. (1966): Toc. cit.
Example 1.2.2, pp. 85-87.

. AZ IN METERS
0 10 20 30 40

PLOT OF Ri=i0Q

AT IN em/sec

TUHBULENT FLOW

LAMINAR FLOW
4, .
0-,
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CHAPTER 2
EXAMPLE 2.1.1

Dietrich, G. and K., Kalle: Loc, cit, Example 1.1.4, pp. 152-154,

EXAMPLE 2,1.2

von Arx, W, S.: Loc. cit. Example 1.3.3, pp. 141-142.

EXAMPLE 2,1.3
(a) Dietrich, G. and K. Kalle: Loc. cit. Example 1;1.4, pp. 151-158,

(b), (e) von Arx, W. S.: Loc. cit. Example 1.3.3, pp. l44-146.

EXAMPLE 2.1.4

(a), (b) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Loc, cit.
Example 1.3.1, pp. 104-110,

EXAMPLE 2.1.5

(a) Annual heat storage in ocean = 7.2 = 1022 cal
Annual heat storage in land = 8.4 - 1021 a1
Daily incoming radiation = 1.5 - 1021 cal fday
Different capacities essevtial due to difference in specific
heat, occurrence of turbulent exchange processes in water.

(b) 57.2°C and 6.6°C

(¢), (d) Defant, A.: lLoc. cit, Example 1.4.2, pp. 110-117.
Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Loc. cit. Example -
1.3.1, pp. 124-128. '

EXAMPIE 2.1.6

- {(a) - (c) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4,
pp. 159-169, : .

EXAMPLE 2.2.1

' 2
(2} Ocean: 1.7 - 1018 cal; atmosphere: 1.2 - 10 0 cal

2 .
(b) Ocean: 1.1 - 10 1 cal/day; atmosphere: 3.6 - 1021 cal/day

(¢) Latent heat in atmospherc: 9 . 1021'ca1

(d) Advective heat transport in oceanic currents {e.g., western
boundary currents).




EXAMPIE 2.2.2

The heat transport per second has been related to 0°C. The reference
temperature is arbitrary, since the net heat tramsport is an. absolute

value.

Surface Water: 150 x 1012 cal/sec

Central Water: . : 10 x 101'2 cal/sec

Deep Water: -27 x 1012 cal/ﬁec

Bottom Water: 2 x 1012 cal/sec

Net heat transport northward 135 x 1012 cal/sec
= 5.7 x 1011 kw

EXAMPLE 2.2.3

{a) Heat flux = 600 cal cm—2 sec-l; power = 12.6 x 1011 kwatts

: ' -4
(b) Kinetic energy per unit mass: 2.7 ¥ 10 = cal
Excess heat content per unit mass: & cal

EXAMPLE 2,.2.4

0.2 m for molecular thermal diffusivity
28.7 m for eddy thermal diffusivity

{a) 1 day : Depfh
Depth

M

It

1 year: Depth
Depth

3.6 m for molecular thermal diffusivity
544 .0 m for eddy thermal diffusivity

(b) Lag of 180°: 28.7 m for 1 day; 544.0 m for 1 year
Lag of 360°: 75.4 m for 1 day; 1088.0 m for 1 year

(c) 1 day : phase velocity = 6.6 x 10h2 cm/f sec
3.9 x 10_3 cm/sec

I

I year: phase velocity

EXAMPLE 2.2.5

- | -8/5
dp — p us H - =z . . _
@ dzlerie. T 50 - _gH"'( H ) ; eritical deptl} = 25m

(b) 235 cm/sec

{c) Dietrich, G. and XK. Kalle: Loc. cit, Example 1.1.4, pp. 471-474,

EXAMPLE 2.3.1

(a) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Loc, cit.
Example 1.3.1, pp. 124-126,

(b) Three main reasons: (i) Atlantic is main freshwater source for
rivers and lakes in adjacent continents; (ii) deficit ol zomal water

. e B et o = W 4 Tl it e P = T A ————] ¢ 1 - e ———

i n sum e



vapor transport in the sovthern west wind drife due ro Pre e
along tha Andes; (iii) presence of the arid European Med{terp am 1n

EXAMPLE 2.3.2

Sverdrup, H. U,, M. ¥W. Johnson, R. H. Fieming: loc, ¢it, ..
1.3.1, pp. 124-126.

EXAMPLE 2.3.3
(a), (b) Defant, A.: Loc. cit. Example 1.4.2, pp- 154-156.
._(c) Meteor: 48m; Altair: 47m

(d) Meteor: 916m; Altair: 900m, In presence of a therﬁoclinp A will
be drastically decreased. *

EXAMPLE 2.3.4
(a) 40.6 cm
() 2.78 - 10° kwh

(c) 96 years

EXAMPLE 2.4.1

(a) With E-P = 50 cm/year, S{z = 10m) = 35.055 %

(b) With E-P

i

-50 em/year, S(z = 10m) = 34.945 %
EXAMPIE 2.4.2

(a) See Fig. 2.1. Also, Schott, F. (1966): Der OberflHchensalzpehall
in der Nordsce, Deut. Hydr. Zeitschr., A(8), Br. 9.

’

EXAMPLE 2.5.1

(a), (b) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Loc. cit.
Example 1.3.1, pp. 153-163. ’

EXAMPLE 2.5.2
(a) See Fig. é.2.
(b) See Fig. 2.3.
() Diugrich, G. and K. ﬁalle:_ Loc. cit. Exanple 1.1.5, pp. 198-26:2,

(é) Sce Fig. 2.4.



EXAMPLE 2.3.2

vapor transport in the southern west wind drift due Eu Prociog: .o

along the Andes; (iii) presence of the arid Edropean Meditergas on

I

Sverdrup, H. U., M. W, Johnson, R. H. Fieming: boc, cit, v,
1.3.1, pp. 124-126, '

EXAMPLE 2,3.3
(a), (b) Defant, A.: Lbc. cit. Example 1.4.2, pp- 154-156,
..(c) Meteor: 48m; Altair: 47m

(d) Meteor: 916m; Altair: 900m, In presence of a thermocline A will
be drastically decreased. z

EXAMPLE 2.3.4
(a) 40.6 cm
(b) 2.78 - 10° kwh

(¢} 96 years

EXAMPLE 2.4.1

(a) With E-P

it

50 em/year, S(z = 10m) = 35,055 %

(b) With E-P

]

-50 em/year, §(z = 10m) = 34.945 %,
EXAMPLE 2.4.2

{(a) See Fig. 2.1. Also, Schott, F. (1966): Der Oberflichensalzpehall
in der Nordsee, Deut. Hydr. Zeitschr., A(8), Nr. 9.

*

EXAMPLE 2,5.1

(a), ) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: loc. cit.
Example 1.3.1, pp. 153-163. '

EXAMPLE 2.5.2
(a) See Fig. i.Z_
(b) See Fig. 2.3,
{(¢) Dietrich, G. and K. Kﬁlle: Loc. cit. Example 1.1.4, pp. 198-202.

(d) Seec Fig. 2.4.
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' 5o 100 150 200 x(km)

Fig. 2.1: Answer to Example 2.4.2. (After Schott, 1966)

4

»

demd 600 : 500 200 100
Jr. L i i

- &
29
. 4
T°C
| » X, 7T
X, &
0
t=0
| 3

Fig. 2.2: Answer to Example 2.5.2(a).
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20
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[
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e \:’ . -:\ ‘k{; L 4,

.. R
Fig. 2.3: Answer to Example £.0.. R
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EXAMPLE 2.5.3

(a}, (b) See analogue éxample in Defant, A,: loc. cit,
: — =l

1.4.2, pp. 214-216,

EXAMPLE 2.,5.4

~ (a), (b), (c) Broecker, W, (1963): The Sea, Vol, 1II,

Example’

and Large-scale Oceanic Mixing,"” Interscience Publ., pp. BR-95,
Also for (c) Neuman, G. and W. J. Pierson, Jr.: Loc, cit, Example

1.2.2, pp. 465-478,

EXAMPLE 2.5.5

(a) See Fig. 2.5 to 2.7.

(b) April; Mid-May; Winter water from 1957,

{c) Evaporation is greater in fall and winter whem surface winds are

stronger. During summer wind speeds are low and preciplitation cx-
ceeds evaporation and during fall there is excess evaporation.

Duri ' p ' :
(d) ur}ng s?mmer ? ' more important ‘effect
During winter 8 .

For vertical convection see Fig. 2.7.

(e) {i) Combined effects of winter cooling and evaporation; .(ii)

winter cooling; (iii) wind mixing (winter cooling lowers surface
density below 4°C because 8 < 24.7 %0.

(f) See Fig. 2.8 a, b.

"Radiolasotopen

(g) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 172-176.

EXAMPLE 2.6.1

(a) - (c) Dietrich,.G. and K. Kalle: Loc. cit. Example 1.1.4,

pp. 349-352,

EXAMPLE 2.6.2

(i) and (ii) See Figs. 2.9 a, b.

EXAMPLE 2.6.3

75 100 125 150 175 200 225

250

3T 2T
@ vg = A wE
(b) i)
W-IUS (cm sec )

-9 -11 40 0

e et r— e



DEPTH IN METERS

1957

1958

- B-1itl

{00

200

1957

JAN | FEB (MAR ; APR {MAY | JUN | JUL ; AUG | SEP ) OCT | NOV | DEG | JAN | FEB

Fig. 2.5: Answer to Example 2.5.5(a).

1958

DEPTH IN METERS

200

160

3ij;////

Fig.

N

Answer to Examnle 2.5.%{a)
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Fig. 2.7: Answver to Example 2.5.5{a)
S, MAR. MAr NLY- SEFPT NOW JAN. JEN. . MAR. MAY JULr SEPT MO JAN.
Q 1 1 1 1 1, 1 ] [e] fe) o]
DEFTH DEPTH

1001 100 100~ @ #0 8¢ 9% ;0% 12® [T G S L STole]

200 : 200 200 200

Fig. 2.8a: Answer to Example 2.5.5(f) Fig. 2.8b: Answer to Example 2.5.5(f)




B-13

(c) Neuman, G. and W. J. Pierson, Jr.: Loc. cit. Example 1.2.2
pp- 445-446. ' :

EXAMPLE 2.6.4

(a), (i) Runoff from Norway and Greenland generates lighter water
in coastal areas and, hence, an offshore directed pressure gradient.

(ii) Runoff from islands (e.g., Iceland) has same effect.

(b) An additional component of the Norwegian-Greenland Sea circula--
tion is due to the inflow of the Northeast Atlantic Curvent along
Norway and a compensating outflow along Greenland. '

Fig. 2.%a: Answer to )
Example 2.6.2, EVAPORATION -
arid climate,.

o T

Ocean, Straits S
of Gibraltiar,
Mediterranean
Sea.

The Indian Qcean,
Strait of Bab-
el-Mandeh, Red
Sea.

The Indian Ocean,
Strait of Hormuz,
Persian Gulf.

PRECIPITATION
Fig. 2.9b: Answer to ' and RUNGFF

Example 2.6.2, :

humid climate, \\;\ﬁliilié.

The North Sea, g e
Kattegat, Baltic CrC {*

Sea.

The Mediterra-
nean Sea, Bos~
porus, Black Sea.

Atlantic Ocean,
most of YWorwe-
gian fjords.
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CHAPTER 3
EXAMPLE 3.1.1

(a), (b) von Arx, W. S.: Loc. c£t( Example 1.3.3, pp. 36-38.
EXAMPLE 3.1.2

(a) 978.28 dyn m, 983.23 dyn m, 984.23 dyn m. Depth in dyn m ex~
presses energy. : ' '

(b) = 0° 0 = 60°
1,000 m D=0.978 h D =0.983 h
10,000 m D=0.980 h D=0.985 h

]
]

Latitude effect is more important.
(c) 1,012 dbar, 10,500 dbar
EXAMPLE 3.1.3
(a), (b) Defant, A,: Loc. cit. Example 1.4.2, pp. 304-308.
(¢) von Arx, W. S.: TLoc. cit, Example 1.3.3, pp. 130—133.
EXAMPLE 3.1.4

(a), (b) Krauss, W. (1966): Interne Wellen, Borntraeger-Verlag,
- : PP. 16-17.

Phillips, 0. M. (1966): The Dynamics of the Upper Ocean, Cambridge
University Press, pp. 14-19 and pp. 161-165,

{c) Depth (m) N, = jgE (sec-l)
0
50 g
100 120 x 10~%
150 -4
94 % 10
200 4
Zon 48 x 107,
9.8 x 10
600 -4
9.8 x 10
800 9.8 x 1077
1,000 8.3 x 1074
1,200 8. -4
.7 % 10
1.500 Sl X0,
2.000 3 4
2.500 Aox 10

(d) Lerger compressibility of float -2 overshooting
Smaller compressibility of float ——» undershooting
Equal compressibility of fioat -—» perfect following




EXAMPLE 3.2.1
| (a), (b) Defant, A.: Loc. cit. Example 1.4.2, pp. 343-344,
EXAMPLE 3.2.2 |
(2) 150 cm/sec towards 90°
(b) Equatorial undercurrent.
EXAMPLE 3.2.3
(a) See Fig. 3.1.
(b) (i) Tidal; (ii) 0.5 kn towards 48°; (iii) Ekman drift
(c) See Fig. 3.2.
EXAMPLE 3.2.4

Neumann, G. and W, J. Plerson, Jr.: Loc. cit. Example 1,2,2,
pp. 119-120. -

EXAMPLE 3.2.5

{a) Top left 2.68 x 10" ' cm/sec douwn
Top right 3.57 x 10“4 cm/sec down
Bottom right 1.43 x 10-4 cm/sec down
Bottom left 7.68 x 10—4 cm/sec up
(b) Errors: (i) Ignored world outside the four areas.

(ii) Density may vary.
- (iii) Ignored cyclonic motion on the left, and its
dynamic effects.

EXAMPLE 3.2.6

2gu W H
3 2, . 111
u, - u, (2gH1 + ul) ¥ =

0
2 .

it

u, 4.3 m/sgc; H2 = 9.3 m
EXAMPLE 3.2.7

Vv < 4 cmfsec

EXAMPLE 3.3.1

(a),(b) Dietrich, G. and K. Kalle: ‘Loc, cit. Example 1.1.4, pp.

314,

B-15
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Fig. 3.1: Answer to Example 3.2.3(a).
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EXAMPLE 3.3.2

B-17

(a), () i z = const | - D= const
ﬁ =0 poleward acceleration unaccelerated
fo #0 cycloidal path in

EXAMPLE 3.3.3

{(a) 12' towards the
Momentarily 12°'

. . unaccelerated
zonal direction n lerate

south _
deflection toward the west.

(b) No deflection from the vertical.

(c) Particle oscillates around the equator.

EXAMPLE 3.3.4

Initial speed 1.56 cm secﬁl

EXAMPLE 3.3.5

(a) MZ: 75° N gnd ?;

0,: 28° N and S

(b) 12 hours at the North pole

{(c) Bee Fig. 3.3.

EXAMPLE 3.4.1

(a) - (c) Weumann, G. and W. J. Pierson, Jr.: Loc. cit. Example 1.2.2,

pp. 114-186.

EXAMPLE 3,4.2

£

x = %E~(t - 1 sin ft); y = ¥e (1 -~ cos ft), represénting cycloidal

f=2

motion in zonal direction.

EXAMPLE 3.4.3
See Fig., 3.4,

EXAMPLE 3.4.4

(a), (b) Stommel, H.

(1965): The Gulf Stream, 2d ed., University of

California Press, pp. 108-111.

(¢) von Arx, W. S.:

Loc, eit, Example 1.3.3, pp. 107-111,
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(d) (1) Northward motion causes anticyclonic

Southward cyclonic TOlatien -+ oo

table.

(ii)} Car moves towards the north.

EXAMPLE 3.5.1

(a) Sverdrup, H. U., M. W. Johnson, and R. H, Flcmiug; T .t
Example 1.3.1, pp. 460-465. - o

) 29 cm/sec; 2 * 10°% co/kn
EXAMPLE 3.5.2
See Fig. 3.5. and Dietrich, G. and K, Kalle: Loc.
: Example 1.1. ZT"EE_HT7B JF
EXAMPLE 3.5.3

Between A and B: 67 cm/sec towards north
Between B and C: 54 eim/sec towards south

EXAMPLE 3.5.4

" (a) - (d) Neumann, G. and W. J, Piersom, Jr.: Loc. cit. txanpln
1.2.2, pp. 191-205 and pp. 450-453.

EXAMPLE 3.5.5

Stommel, H.: Loc. cit. Exaﬁple 3.4.4, pp. 154-156.
EXAMPLE 3.5.6

Stommel, H.: Loc. cit. Example 3.4.4, pp. 81-103 and sec Fin.’
EXAMPLE 3.5.7 B

Stommel, H.: Loc. cit. Example 3.4.4, pp. 93-103.

A
X

A
X

It

6 N
10 cmzfsec: Narrow, slow boundary current

109 szlsec: Broad, fast boundary current

EXAMPLE 3.5.8

(a) - (¢) Haltiner, G. J. and F. L. Martin (1957): Dynamical ant
Physical Meteorology, McGraw-Hill, pp. 356-357.
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CHAFTER 4

EXAMPLE 4.1.1

Sears, F. W. (1958): Mechanics, Wave Motion and Heat, Addison-Wesley,
Chapters 16, 17. '

EXAMPLE 4.1.2

(2) Kinsman, B. (1965): Windwaves, Prentice Hall, pp. 126-128.

(b) Equation for orbital path of progre551ve waves obtained by inte-
gration with respect to t:

2
(x_- xc (z - zc) =1
- 2
[;%ﬂﬁ' cosh ®(z, - _:] (E% + sinh n(z, - Hz:]
o HZ enH
cosh n(z, - H) as-—_nEL_H_‘
for short waves -z i
sinh #u(z, ~ H) = --———E——E—_
for long waves cosh u(z, - H) ~ ui
. sinh n(z, -~ H) = 1
The equation of the orbital path simplifies for
: 2
short waves to: (x - %) + (z - 20) 1
(ﬁ a% e_kz°)2 (ﬁ ax e""za)z
w W
vhere a#* = aeKH .
2 2
long waves to: AX o %) + Ez " Za) =1
H 2 LM I
G 2) G2 (e - H))

(c) Equation of orbital ﬁath_for standing waves obtained by inte-
gration with respect to t:

. Z = Z
;“j“;l = - tanh #(z, - H) cot ux,
o .

simplification for

: zZ - z
short waves: ;—"—;1 = cot MX,
- 2

1

I

1

4

1;

1
+
l-"wk'-i



-B=22

) z - 2
. . long waves: —=R = - u(z, - H) cot ux
4 X - x _ o [
- o

(d) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 333,
362, 394, ' _

Kinsman, B.: Loc. cit. Example 4.1.2, pp. 138-140.
EXAMPLE 4,1.3

‘ (a) - (d) Krauss, W.: Loc., cit. Example 3.1.4, pp. 15- 16 and pp. 26-
: 29. (See also Engllsh summaries p. 216,) :

EXAMPLE 4.1.4

Re‘Eb} = - Wwra+p; cosh u(z - H) - sin (ux - wt) + 80,2, amplitudes
of long and short waves are frequency dependent.

EXAMPLE 4.2.1
(a) 156 m
(b) ;S.G_m/sec
SR NN WP
(d) Kinsman, B,: Loc. cit, Example 4.1.2, pp. 128-132,

(e) Dietrich, G. and K. Kalle: Log. cit. Example 1.1.4, pp. 382-
: 384, - )

EXAMPLE 4.2.2
{(a) 139 hours before first observation.
(b) 11,700 km

EXAMPLE 4.2,3

(2), (b) D1etr1ch G. and K. kalle Loc. cit. Example 1.1.4, pp. 380-
384,

EXAMPLE 4.2.4
(@) 7= 2L
4 gH

(b) Dietrich, G. and K. Kalle: Loc. cit. Exanmple 1.1.4, pp. 398-405.
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EXAMPLE 4.3.1
. (ay, () Kraﬁss, W.: Loc, cit. Example 3.1.4, pp. 43-45.
EKAMPLE 4.3.2 : .
(@), ) Phiilips, 0. M.: Loc. cit. Example 3.1.4, pp. 161-165.
EXAMPLE 4.3.3 |
(a) Krauss, W.: Loc. cit. Example 3.1.4, pp.. 145-146,
(b) Since internal wave processes are controlled by a dispersion
relation the choice of ¥(0) requires a corresponding choicg of the

spatial scale,

(c) %g = f(z), éspecially step~like fine structure of the strati-

fication.
EXAMPLE 4,3.4

(2), (b) Krauss, W.: Loc. cit. Example 3.1.4, pp. 46-49.

EXAMPIE 4.4.1
(a) 4,600 kn from the earth's center.

(b) Defant, A. (1960): Physical Oceanography 11, Pergamon Press,
PP. 254-258.

EXAMPLE 4.4.2
{(a)-(c) Neumahn, G., W. J. Pierson, Jr.: Loc. cit. Example 1.2.2,
pp. 302-304. Dietrich, G., and K, Kalle: 1Iope., cit. Example 1.1.4,

pp. 423-425. Bartels, J. (1957): Handbuch der Physik, Vol. 48,
"GezeitenkrHfte,'s Springer-Verlag, pp. 734-746. .

EXAMPLE 4.4.3

(a), (b) Defant, A. (1958): Ebb and Flow, University of Michigan
Press, pp. 26-33, .

EXAMPLE 4.4 .4

(2) Fy = 0 (10‘4 dynes); T = 3.2 dynes/cmz; €C=1.3- 1073 dynes;
pressure gradient: 1.3 - 10_3 dynes.
(b) Ratio of gravity, g, to tidal induced changes, Ag, approximately

9 . 109:1. For tides of the atmosphere and the =o0lid earth, see
Defaut, A., loc. cit, Example 4.4.3, pp. 106-117.

- - m e e e <7 A T
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EXAMPLE 4.5.1

(a), (b) Defant, A.: Loc. cit., Vol. II, Example 4.4.1, pp. 305-308.

. EXAMPLE 4.5.2

(a) - (d) See Figures 4.1 and 4.2.

EXAMPLE 4.5.3
(2) 0-12h: 4 = 3.9, v = -6.2; 13-25h: u = 2.6, v = -5.0.
(b) See Fig. 4.3,

(¢) Major and minor axes, direction § : 1)L
(1/{5} {uf + u? + Vf + v3 % [(uf'+ uz + Vf + vg)z-'&(ulvz—uavi)g]’}

tan 2§ = 2(u, v, + uavg)/(uf + ud - vf - v3) -
Uy = ug cos ¥ ; Vy = V5 cos ¥ up = -~ug sin Yo; vy = -V, sin ¥,

(d) See Fig. 4.3.
EXAMPLE 4.5.4
(a) -23.8 cm
{(b) rising
(e) HT at 0200 hours; LT at 1000 hours

(d) See Fig. 4.4.

K .
Form factor given by ﬁ—wzlg— &~ 0.39; hence mixed, but predominantly
2 2 . .

semidiurnal tides.
EXAMPLE 4.5.5

(a) No, because of variations in the vertical distribution of ampli-
tudes and phases. . _

(b) Approximations for v-component
0.-order 1.-order 0.+1.-order
mode mode modes
VO . % o vl ('-le v (DV
16.0 267 6.1 220 20.6 255
16.0 267 0.6 040 15.6 269
16.0 267 5.5 040 12.9 28

EXAMPLE 4.6.1

(a) Dietrich, G. and ¥. Kalle: Ioc. cit. Example 1.1.4, Pp. 443-
G444,
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SOLAR HOURS

.- 0 2 4 6 8 10 iz 14 16 18- 20 22 24
+ 40 ) i X 1 i n n L n i 1 1 1 1 | 3 1 I i i r 1 I 1
cms™
+30 4 b
ot

©+20 4 /4 h)

+10 4/ \'\
/
0 ! L L X a, T
.10
201 (b)
=20 4
604
NORTH COMP v | Tw Av by EAST COMF v |Tw Ay | ¢v
( ) v O x4 _30 - LI O o 24 -
c | bas] 26| 15 (1228 771 5
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Fig. 4.2: Answer to Example 4,5.2(b),-(c), (d).
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285%
> E
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Fig. 4.3: Answer to Example 4.5.3(b}, (d).
3 JANUARY, 1969 ' LOCAL TIME
22 - h 24

-60 4
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PORT OF
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Fig. 4.4: Answer to Example 4.5.4(d).
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(b) Substantial increase of oceanic water depth so that ¢ = gH
would equal the velocity of the lunar zenith.

EXAMPLE 4.6 .2

(a) Because of the deflection of Coriolis force, Tsunamis are not

affected because of much lower periods (ellipse degenerates essen-
tially to a straight line).

(b) Defant, A.: Loc. cit. Example 4.4.3, pp. 70-75.

(¢) Current maximum and elevation minimum characterize amphidromic
point,

EXAMPLE 4.6.3

(a) - (c) Defant, A: Loc. cit. Example 4.4.3, pp. 65-88.

EXAMPLE 4.6.4

(a) Assuming an idealized Kelvin wave, the tidal amplitude along the

"English" coast will be 67% of the amplitude along the "French"
cogast.

t

(b) Real coastline deviates strongly from idealized channel.

(¢) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, p. 465



