

Sea Grant Depository

STUDY QUESTIONS IN PHYSICAL OCEANOGRAPHY

by

Walter Difing
Peter Duncan Jens Meincke

Copyright ${ }^{\text {© }} 1971$
 By Walter Duing, Peter Duncan, and Jens Meincke All rights reserved
 Library of Congress Catalog Card Number: 75-163659

The University of Miami's Sea Grant Program is a part of the National Sea Grant Program, which is maintained by the National Oceanic and Atmosphexic Administration of the U. S. Department of Commerce.

PREFACE

This book is intended for students with a basic knowledge of physical oceanography, It also may stimulate instructors in other disciplines of the marine sciences to formulate practical exercises for their students. In addition, practical workers in the field may find it useful for review. and reference. The book contains a collection of study questions which have their origin in practical exercises accompanying a series of courses given by the authors at the Universities of Hawaii, Kiel, and Miami.

This collection of problems and answers cannot and does not pretend to be complete. However, the selection of the material, and the sequence of its presentation, should lead to an improved understanding of the basic. principles of physical oceanography. In a sense, the study questions complete the presently available textbooks. The answers are given either in the form of references to various textbooks or as fialal results in graphical or numerical form. This leaves the student the freedom to independently solve the problems and to then evaluate his results. Metric units have been used throughout the text. Slide rule accuracy is considered adequate for the solutions.

In addition to the numerous redundant textbook references in Part B (Answers), the user is referred to two generally useful publications: "Handbook of Oceanographic Tables," U. S. Naval Oceanographic Office, Spec. Publ. 68, Washington, 2966, and "Laboratory Manual" on Descriptive Oceanography by R. T. Hodgson from Oregon State University, Department of Oceanography.

The authors gratefully acknowledge the valuable assistance of Mrs. Janiece Rydell during the considerable task of producing the manuscript,
W. DHing, Univ of Miami (USA)

March, 1971
P. Duncan, Univ of Hawaii (USA)
J. Meincke, Univ. of Kiel (Germ.)
PREFACE Page
GLOSSARY OF SYMBOLS vili
PART A - QUESTIONS
CHAPTER 1 - PHYSICAL PROPERTIES OF SEAWATER A-1
1.1 Thermodynamics of Seawater A-1
1.1.1 Concept of Salinity
A-1
A-1
1.1.2 The Equation of State for Seawater
A-1
A-1
1.1.3 Adiabatic Processes
1.1.3 Adiabatic Processes
A-2
A-2
1.1.4 Effects of the Chemical Potential of Seawater A-2
1.2 Acoustical Properties A-4
1.2.1 Isothermal and Adiabatic Compressibility A-4
1.2.2 Vertical Distribution of Sound Velocity
A-5
A-5
1.2.3 Near Surface Sound Channel
1.2.3 Near Surface Sound Channel
A-5
A-5
1.2.4 Echo Sounding
A-6
A-6 A-6
1.2.5 Shadow Zones
1.2.5 Shadow Zones
1.3 Optical and E1ectrical Properties A-7
1.3.1 Attenuation of Light A-7
1.3.2 Color of Seawater
A-7
A-7
1.3.3 Temperature Measurements from Air and Space A-8
1.3.4 Electrical Conductivity of Seawater
A-8
A-8
1.3.5 Electromagnetic Method of Measuring Currents A-9
1.4 Diffusion and Mixing A-9
1.4.1 Richardson's Criterion
A-9
A-9
1.4.2 Approximations of Reynolds Stress Terms
A- 10
A- 10
1.4.3 Vertical and Horizontal Eddy Diffusivity
A-10
A-10
1.4.4 Spatial Scale of Turbulent Processes A-12
1.5 Properties of Sea Ice A-13
1.5.1 The Anomalous Density of Water
A-13
A-13
1.5.2 Freezing and Aging of Sea Ice
A-13
A-13
1.5.3 Growth Rate of an Ice Sheet A-14
CHAPTER 2 - BUDGET OF HEAT AND MASS A-15
2.1 Heat Transfer Ocean $<->$ Atmosphere A-15
2.1.1 Equation of Heat Balance
A-15
A-15
2.1.2 Padiation Balance
A-15
A-15
2.1.3 Influence of Atmospheric Gases
A-15
A-15
2.1.4 Absorption of Radiation Energy
A-16
A-16
2.1.5 Heat Storage Capacity
2.1.5 Heat Storage Capacity
A-16
A-16
2.1.6 Temperature Difference Water-Air A-17
Page
2.2 Heat Transfer in the Ocean A-18
2.2.1 Energy of Oceanic and Atmospheric Circulation A-18
2.2.2 Meridional Net Heat Transfer A-18
2.2.3 Advective Heat Transfer of the Gulf Stream A-19
2.2.4 Vertical Heat Conduction A-19
2.2.5 Vertical Heat Transfer Due to Tidal Mixing A-20
2.3 Water Transport Ocean $<>$ Atmosphere A-20
2.3.1 Meridional Distribution of Evaporation and Precipitation A-20
2.3.2 Surface Salinity, Evaporation, and Precipitation A-21 A-21
2.3.3 Diurnal Salinity Variations A-22
2.3.4 Evaporation from the Mediterranean Sea A-23
2.4 Mass Transport in the Ocean A-23
2.4.1 Propagation of Surface Salinity Disturbances A-23
2.4.2 Horizontal Salinity Distribution in an Estuarine Area A-24
2.5 Water Mass Identification and Formation A-25
2.5.1 Distribution of Various Properties A-25
2.5.2 T-S Relationship A. 25
2.5.3 Application of the T -S Relationship A-26
2.5.4 Radioactive Tracers A-28
2.5.5 Water Mass Formation in the Gulf of Naples A-29
2.6 Thermohaline Circulation A- 34
2.6.1 Thermohaline Surface Layer Circulation A-34
2.6.2 Circulation Patterns of Adjacent Seas A-34
2.6.3 Maintenance of the Oceanic Thermocline A-34
2.6.4 Thermohaline Circulation in the Norwegian and Greenland Sea A-35
CHAPTER 3 - OCEAN CURRENTS A-36
3.1 Hydrostatics A-36
3.1.1 Gravity A-36
3.1.2 Distribution of Gravity A-36
3.1.3 Barotropic and Baroclinic Modes A-36
3.1.4 Stability Oscillations A-37
3.2 Kinematics A-37
3.2.1 Dead Reckoning A-37
3.2.2 Relative Current Measurements A- 38
3.2.3 Periodic and Nonperiodic Surface Currents A-38
3.2.4 Equation of Continuity A-39
3.2.5 Estimation of Vertical Velocity A-39
3.2.6 Flow Through a Constriction A-40
3.2.7 Inflow into the Red Sea A-40

TABLE OF CONTENTS
Page
A-40
3.3.1 Acting Forces A. 40
3.3.2 Surfaces of Equal Depth and Equal Potential A-41
3.3.3 Coriolis Acceleration A-41
3.3.4 Deflection of a Moving Body A-41
3.3.5 Inertial Motions A-41
3.4 Equation of Motion A-42
3.4.1 Equation of Motion A. -42
3.4.2 Geostrophic Motion A-42
3.4.3 Vorticity A-42
3.4.4 Vorticity Equation, Potential Vorticity A-43
3.5 Applications of the Equation of Motion A-43
3.5.1 Geostrophic Current Calculation A-43
3.5.2 Geostrophic Current Distribution A-44
3.5.3 Estimation of Surface Gurrents A-44
3.5.4 Ekman Drift Currents A. 45
3.5.5 Sverdrup-Relation A-45
3.5.6 Wind-driven Ocean Circulation A-46
3.5.7 Western Boundary Currents A-46
3.5.8 Topographic Influences on Zonal Currents A-47
CHAPTER 4 - WAVES AND TIDES A-48
4.1 General Properties and Classification of Waves A-48
4.1.1 Basic Properties of Harmonic Waves A-48
4.1.2 Glassification of Surface Waves A-48
4.1.3 Classification of Internal Waves A-49
4.1.4 Wave Recording by Pressure Sensors A-49
4.2 Surface Waves (Nontida1) A-50
4.2.1 Short and Long Surface Waves A-50
4.2.2 Energy Dissipation A-50
4.2.3 Storm Surges A-51
4.2.4 Seiches A-51
4.3 Internal Waves (Nontidal) A. 51
4.3.1 Internal Boundary Layer Waves A-51
4.3.2 Scaling Considerations A-52
4.3.3 Method of Observation A-52
4.3.4 Energy of Internal Waves A-53
4.4 Tide Generating Forces A- 53
4.4.1 The Earth-ifoon System A-53
4.4.2 Tidal Potential A-54
4.4.3 Horizontal Component of Lunar Tidal Forces A-54
4.4.4 Magmitude of Tidal Forces A-55
Page
i. 5 Analysis of Tidal Observations A-55
4.5.1 Characteristic Features of Tidal Records A-55
4.5.2 Harmonic Analysis of Tidal Currents A-56
4.5.3 Current Ellipses A-57
4.5.4 Harmonic Synthesis A-58
4.5.5 Barotropic and Baroclinic Tides A-59
4.6 Tides in the Ocean A-59
4.6.1 Equilibrium Tide A-59
4.6.2 Tidal Waves in the Ocean Basins A-60
4.6.3 Tides in Adjacent Seas A-60
4.6.4 Topographic Influences on Tides A-60
PART B - ANSWERS
CHAPTER I B-1
Example 1.1.1 B-I
Example 1.1.2 B-1
Example 1.1.3 B-1
Example 1.1.4 B-1
Examp1e 1.2.1 B-1
Example 1.2.2 B-2
Example 1.2.3 B-2
Example 1.2.4 B-2
Example 1.2.5 B-2
Example 1.3.1 B-3
Example 1.3.2 B-3
Example 1.3.3 B-3
Example 1.3.4 B-3
Example 1.3.5 B-3
Example 1.4.1 B-3
Example 1,4.2 B-4
Example 1,4.3 B-4
Example 1.4.4 B-4
Example 1.5:1 B-4
Example 1.5.2 B-4
Example 1.5.3 B-4
CHAPTER 2 B-5
Example 2.1.1 B-S
Example 2.1.2 B-5
Example 2.1.3 B-5
Example 2.1.4 B-5
Example 2.1.5 B-5
Example 2.1.6 B-5
Page.... :1 2. 2.1B-5
$\therefore \because 1 \mathrm{t} 2.2 .2$ B-6
$\because 1$ ロ! 2.2.3 B. 6
ale 2.2.4 B-6
-ale 2.2.5 B-6
atonte 2.3.1 B-6
y.mple 2.3 .2 B-7
: ample 2.3 .3 B-7
amople 2.3 .4 B-7
ample 2.4 .1 B-7
maple 2.4.2 B-7
wante 2.5.1 B-7
Exumle 2.5.2 B-7
i. sumple 2.5 .3 B-10
Tample 2.5 .4 B-10
Brample 2.5.5 B-10
fxample 2.6.1 B-10
Fxample 2.6 .2 B-10
Example 2.6.3 B-10
Example 2.6 .4 B-13
GEMTER 3 B-14
f.xample 3.1 .1 B-14
Fxample 3.1 .2 B-14
Example 3.1.3 B-14
txample 3.1.4 B-14
Fxample 3.2.1 B-15
Fxample 3.2 .2 B-15
Example 3.2.3 B-15
Fample 3.2 .4 B-15
Example 3.2.5 B-15
Rample 3.2 .6 B-15
Example 3.2.7 B-15
Example 3.3.1 B-15
Pxample 3.3.2 B-17
Example 3.3.3 B-17
Example 3.3.4 B-17
Example 3.3.5 B- 1.7
Example 3.4.1 B-17
Example 3.4.2 B-17
Example 3.4.3 B-17
Example 3.4.4 B-17
Fxample 3.5.1 B-19
Fxample 3.5.2 B-19
Vample 3.5.3 B-19
ixumple 3.5 .4 B-19
xumbe 3.5 .5 B-19
Maple 3.5.6 B-19
Wample 3.5 .7 B-19
Frample 3,5.8 B-19
Page
MAPTER 4 B-21
Example 4.1.1 B-21
Example 4.1.2 B-21
Example 4.1.3 B-22
Example 4.1.4 B-22
Example 4.2.1 B-22
Example 4.2.2 B-22
Example 4.2.3 B-22
Example 4.2.4 B-22
Example 4.3.1 B-23
Example 4.3.2 B-23
Example 4.3.3 B-23
Example 4.3.4 B-23
Example 4.4.1 B-23
Example 4.4.2 B-23
Example 4.4.3 B-23
Example 4.4.4 B-23
Example 4.5.1 B-24
Example 4.5.2 B-24
Example 4.5.3 B-24
Example 4.5.4 B-24
Example 4,5.5 B-24
Example 4.6.1 B-24
Example 4.6.2 B-28
Example 4.6.3 B-28
Example 4.6.4 B-28

$$
\begin{aligned}
& \text { (*) } \quad \text { indicates cross-reference to example stated } \\
& x, y, z=\text { Cartesian coordinates in east, north, and downward direction } \\
& \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}=\text { unit vectors in } \mathrm{x}, \mathrm{y}, \mathrm{z} \text { direction } \\
& \varphi=\text { latitude } \\
& \lambda=\text { wave length } \\
& x, \eta, y=\text { wave numbers in } x, y, z \text { direction } \\
& \text { a }=\text { amplitude } \\
& \xi=\text { vertical displacement from the state of rest } \\
& \mathrm{H}=\text { constant water depth for a fixed location } \\
& \text { D }=\text { constant layer depth for a fixed location } \\
& L=\text { constant horizontal distance } \\
& \Gamma=\frac{1}{\bar{q}} \frac{\partial \rho}{\partial z}=\text { stability (frequently reported as } \mathrm{E}=\Gamma=10^{8} \text {, } \\
& t=\text { time } \\
& \vec{\Omega}=\left(o, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}\right)=\text { earth's angular velocity } \\
& |\vec{\Omega}|=7.29 \cdot 10^{5}\left[\sec ^{-1}\right] \\
& f=2|\vec{\Omega}| \sin \varphi=\text { Coriolis parameter } \\
& \omega=\text { angular frequency } \\
& \mathrm{N}=\sqrt{\mathrm{g} \mathrm{\Gamma}}=\text { Brunt-vais } 41 H \text { frequency } \\
& \zeta=\text { relative vorticity } \\
& \mathrm{g}=\text { local acceleration of gravity } \\
& \vec{K}=\left(K_{x}, K_{y}, K_{z}\right)=\text { external forces } \\
& \vec{R}=\left(R_{x}, R_{y}, R_{z}\right)=\text { frictional forces } \\
& \overrightarrow{\mathrm{T}}=\left(\mathrm{T}_{\mathrm{X}}, \mathrm{~T}_{\mathrm{y}}, \mathrm{~T}_{\mathrm{z}}\right)=\text { stress } \\
& \mathrm{T}=\text { temperature }\left[{ }^{\circ} \mathrm{C}\right] \\
& s=\text { salinity }[\%]
\end{aligned}
$$

glossary of symbols

$$
\begin{aligned}
p & =\text { pressure } \\
\rho & =\text { density } \\
\alpha & =\frac{1}{0}=\text { specific volume } \\
\sigma_{t} & =\text { conventionalized density for atmospheric pressure } \\
Q & =\text { heat content } \\
C_{p} & =\text { specific heat at constant pressure } \\
\eta & =\text { specific entropy } \\
A_{x}, A_{y}, A_{z} & =\text { turbulent exchange coefficients in } x, y, z \text { direction }
\end{aligned}
$$

PART A - QUESTIONS

1.1 Thermodynamics of Seawater

EXAMPLE 1.1.1 The Concept of Salinity
Using the first law of thermodynamics for a multiconstituent system within a gravitational field, the relationship

$$
\mathrm{de}=\operatorname{Tdn}-\mathrm{pd} \alpha+\sum_{1} \mu_{1} d m_{1}-\mathrm{gdz}
$$

describes seawater as an equilibrium system of unit mass (e = specific. total energy $=$ specific internal energy + potential energy; $\mu_{1}=$ specific chemical potential of the $i=t h$ constituent of mass fraction m_{1}). A great simplification is achieved if

$$
\sum_{i} \mu_{1} \mathrm{dm}_{1} \quad \text { is replaced by } \quad 10^{-3} \mu d \mathrm{~S}
$$

where μ is a combined specific chemical potential and S is the salirity in $\%$ Describe the law which allows the replacement of $\sum_{1} \mu_{1} \mathrm{dm}$: and derive the simplified term.

EXAMPLE 1.1.2 The Equation of State for Seawater
T, S, and P are the parameters which are measured by standard hydrographic techniques. In order to use the thermodynamic equation for seawater, given in Example 1.1.1, one of the quantities to be determined is

$$
\alpha=\alpha(\mathrm{S}, \mathrm{~T}, \mathrm{P})
$$

(a) Using the total differential for α, discuss briefly the set of three fundamental determinations which have been carried out to determine $\alpha=\alpha(\mathrm{S}, \mathrm{T}, \mathrm{p})$.
(b) Equal votumes of water with the same density ($\sigma_{\mathrm{t}}=27.50$) are mixed at 1,000 meters.

$$
\begin{array}{ll}
\mathrm{S}_{1}=35.00 \% & \mathrm{~T}_{1}=6.60^{\circ} \mathrm{C} \\
\mathrm{~S}_{2}=34.47 \% & \mathrm{~T}_{2}=2.80^{\circ} \mathrm{C}
\end{array}
$$

Find the temperature, salinity, and density of the resultant water mass. Discuss the physical significance of this.
(c) Assume the temperature of the world oceans bas increased by an average of $2^{\circ} \mathrm{C}$ since the last ice age. What would be the rise of the sea level due to thermal expansion alone?
Coefficient of thermal expansion $\beta=\frac{1}{\alpha_{S, T}} \frac{\partial \alpha_{S, T}}{\partial T} p=10^{-40} \mathrm{C}^{-1}$

Assume that the ocean has vertical sidewalls and an average depth of $3,800 \mathrm{~m}$.

EXAMPLE 1.1.3 Adiabatic Processes

Referring to Examples 1.1.1 and 1.1.2,

$$
\eta=\eta(S, T, p)
$$

has also to be determined for thermodynamic investigations of seawater. One particular aspect is a process where no changes of η occur (adiabatic processes). Neglecting influences of salinity on entropy changes, the relationship

$$
d_{n}=\frac{\partial n_{n}}{\partial T} d T+\frac{\partial n}{\partial p} d p=\frac{c}{T} d T-\frac{\partial \alpha}{\partial T} d_{p}=0
$$

is obtained for adiabatic processes from the thermodynamic equation given in Example 1.1.1.
(a) Find an expression for $\left(\frac{d T}{d p}\right) \quad n=$ const $=\Gamma$
where Γ is the "adiabatic lapse rate." Using Γ, give an expression for the "potential" temperature θ. θ is the temperature which a volume of seawater would attain after it was raised adiabatically from an initial pressure p_{1} and an initial temperature T_{1} to the sea surface.
(b) Using the data given in TAZLE 1.1 , plot the TS-diagram on a largescale TS plotting sheet including a σ_{t}-grid. For depths greater than $2,000 \mathrm{~m}$, also plot the OS-diagram (TABLE 1.2). Is there any reason to prefer the $\theta S-p l o t ?$
(c) In the Cayman Trench (Caribbean Sea), the potential temperature is constant at $\theta=3.78^{\circ} \mathrm{C}$ from 3,000 to 7,000 meters. In the nearby North American Basin, the same potential temperature is found at 1,600 meters. In which direction does the water flow and what is the depth of the sill between the Trench and the Basin?

EXAMPLE 1.1.4 Effects of the Chemical Potential of Seawater

In order to obtain a complete description of seawater as a thermodynamic system at equilibrium

$$
\mu=\mu(S, T, P)
$$

must also be known.
(a) Which physical properties of seawater are related to the determination of $\mu=\mu(S, T, p)$?

TABLE 1.1
Vertical distribution of pararctore in the Philippine Trench ("Willebrord Sne1lius," $\varphi=9^{\circ} 41^{\prime} N, \lambda=126^{\circ} 51^{\prime} E$, May 16,1930)

Depth (m)	$\mathrm{T}^{\circ} \mathrm{C}$	S\%	$c\left(\mathrm{~m} \mathrm{sec}{ }^{-1}\right)$	Depth (m)	$\mathrm{T}^{\mathrm{c}} \mathrm{C}$	S\%	$c\left(m \sec ^{-1}\right)$
0	28.80	34.44	1542.5	1,600	3.00	34.59	1488.2
25	28.30	34.35	1541.7	1,800	2.61	34.60	1489.8
50	28.20	34.18	1541.8	2,000	2.25	34.61	1491.6
75	27.50	34.50	1541.0	3,000	1.64	34.66	1505.9
100	25.90	34.71	1538.0	4,000	1.60	34.67	1522.9
200	15.15	34.60	1510.4	5,000	1.72	34.67	1540.7
400	8.50	34.47	1490.4	6,000	1.86	34.67	1558.8
600	6.48	34.52	1485.9	7,000	2.01	34.68	1577.1
800	5.35	34.52	1484.7	8,000	2.15	34.69	1595.4
1,000	4.45	34.55	1484.3	9,000	2.31	34.68	1613.9
1,200	3.80	34.56	1484.9	10,000	2.48	34.67	1632.3
1,400	3.35	34.57	1486.3				

TABLE 1.2
Adiabatic temperature decrease (in $0.01^{\circ} \mathrm{C}$) if a water particle of temperature T is raised to the surface.

Depth (m)	$\mathrm{T}^{\circ} \mathrm{C}$			
	-2	0	2	4
1,000	2.6	4.4	6.2	7.8
2,000	7.2	10.7	14.1	17.2
3,000	13.6	18.7	23.6	28.2
4,000	21.7	28.4	34.7	40.6
6,000	42.8	52.2	61.1	69.4
8,000	--	81.5	92.5	102.7
10,000	--	115.7	128.3	140.2

(b) The decrease of the temperature T_{f} of the freezing point due to increasing salinity is given by

$$
\Delta T_{E}=-0.097 \mathrm{C} 1 \quad\left(\mathrm{~T}_{\mathrm{E}}=0^{\circ} \mathrm{C} \text { for } \mathrm{CI}=0 \%\right.
$$

The decrease of the temperature T_{m} of the density maximum due to increasing salinity is given by

$$
\Delta \mathrm{T}_{\mathrm{m}}=-0.39 \mathrm{C} 1 \quad\left(\mathrm{~T}_{\mathrm{m}}=4^{\circ} \mathrm{C} \text { for } \mathrm{Cl}=0 \%\right)
$$

(both formulas are approximations for small temperature and salinity ranges. For density/salinity conversion, use $\mathrm{S}=1.80655 \mathrm{Cl} \%$.

Find temperature and salinity where the lines of maximum density and freezing temperature intersect. Explain the role of this intersection point with respect to vertical convection and ice formation in fresh water lakes and oceanic areas.

1.2 Acoustical Properties

EXAMPLE 1.2.1 Isothermal and Adiabatic Compressibility
The specific volume, α_{T}, of a water particle with temperature T and salinity S under atmospheric pressure becomes

$$
\alpha_{\mathrm{T}, \mathrm{~s}, \mathrm{P}}=\alpha_{\mathrm{T}}-\mu \mathrm{p} \alpha_{\mathrm{T}}
$$

if the particle is brought slowly to a pressure level p, where μ is the isothermal compressibility. The adiabatic compressibility is

$$
x=-\frac{1}{\alpha_{T, S, p}} \frac{\mathrm{~d} \alpha_{T, S}, p}{d p}
$$

(a) Find a relation between μ and x by which to compute γ from TABLE 1.3. Compute x for $p=500$, and 7,000 dbar.
(b) Give examples of processes in the ocean which require the knowledge of either μ or u.
(c) What volume would a liter of surface seawater ($\rho_{0}=1.02 \mathrm{~g} / \mathrm{cm}^{3}$) have at a depth of $10,000 \mathrm{~m}$ in the Marianas Trench?

Assume an average isothermal compressibility of

$$
\mu=4.9 \times 10^{-11} \frac{\mathrm{~cm} \mathrm{sec}}{\mathrm{~g}} \mathrm{~g}
$$

and average density of the water column of $\bar{\rho}=1.04 \mathrm{~g} / \mathrm{cm}^{3}$.
(d) Compute the sound velocity c in m/sec using Laplaces formula, which is

$$
\mathbf{c}^{2}=\frac{Y}{p n}
$$

($\gamma=$ ratio of specific heat for constant pressure and volume respectively) from the values obtained under (a). Use $\gamma / \rho=1$.

TABLE 1.3
Isothermal Compressibility μ of Seawater of Salinity 34.85% and Temperature $5^{\circ} \mathrm{C}$

$p($ dbar $)$	0	1,000	2,000	4,000	10,000
$\mu 10^{9}$ (dbar $\left.^{-1}\right)$	4531	4458	4388	4256	3916

EXAMPLE 1.2.2 Vertical Distribution of Sound Velocity
(a) Discuss the vertical distribution of sound velocity given in TABLE 1,1 in terms of the dependence on temperature, salinity, and pressure.
(b) What is meant by the expression "SOFAR CHANNEL"? Explain whether there is any indication of a SOFAR CHANNEL in the data given in TABLE 1.1 and why sonic energy propagates along the axis of this channel.

EXAMPLE 1.2.3 Near Surface Sound Channel
The propagation of sonic energy occurs along rays, which can be described by Snell's Law

$$
c_{V}=\frac{c}{\cos \theta}
$$

where $c_{v}=$ the Snell's Law constant for a given ray ($\mathrm{cm} / \mathrm{sec}$)
$c=$ the velocity of propagation characteristic of the medium at some point on the ray ($\mathrm{cm} / \mathrm{sec}$)
$\theta=$ the angle of inclination of the ray at the same point (deg) For a medium with

$$
\frac{\mathrm{dc}}{\mathrm{dz}}=\text { const. }=\mathrm{g}_{1}
$$

a simple analysis yields the following equation for a ray path

$$
x^{2}+z^{2}=\left(\frac{c_{y}}{g_{2}}\right)^{2}
$$

with $x=0$ where $\theta=0$ (horizontal ray direction) and $z=0$ where $c=0$ (provided the region of constant gradient were sufficiently extensive).
(a) The most important constant gradient layer is the isothermal (and isohaline) layer near the ocean surface. Which effect accounts for a positive vertical sound velocity gradient? Give a numerical : estimation of the gradient.
(b) Draw qualitatively the ray paths for sonic energy which is emit-. ted by a submerged transducer in a constant gradient surface layer. Assume the reflections of the rays at the surface occur as from a rigid boundary.
(c) A directional sound source is located in the surface of a constant sound velocity gradient layer. The energy is emitted in the x-direction at an angle of $\theta=30^{\circ}$ downward from the horizontal. At what distance would a receiver moving in the x-direction along the surface monitor the arrival of sonic energy? Use $g_{1}=0,02 \mathrm{sec}^{-1}$, $c(z=0 \mathrm{~m})=1,500 \mathrm{~m} \mathrm{sec}^{-1}$.

EXAMPLE 1.2.4 Echo Sounding
TABLE 1.4 gives the average sound velocity c for depth intervals.
(a) Determine the time for a sound impulse to be transmitted, reflected and received if the depth of the bottom was $125,175,350,750$, and 950 m .
(b) Calculate the absolute (meters) and relative (\%) error if your echo-sounder is standardized to a speed of $1,500 \mathrm{~m} / \mathrm{sec}$.

TABLE 2.4
Vertical Sound Velouity Distribution

Depth (m)	$\mathrm{c}(\mathrm{m} / \mathrm{sec})$	Depth (m)	$\mathrm{c}(\mathrm{m} / \mathrm{sec})$
	1534.2	300	
25	1534.1	400	1514.2
50	1533.8	500	1511.2
75	1528.3	600	1508.3
100	1523.9	700	1505.8
150	1520.3	800	1503.7
200	1517.2	900	1500.2
		1,000	1500.5

EXAMPLE 1.2.5 Shadow Zones
For both of the following cases, give a qualitative discussion of the changes in the speed of sound. At what angles is total reflection possible? Would it be possible for a subuarine to hide in a shadow zone?

> (i) Salinity constant $\mathrm{T}=25^{\circ} \mathrm{C}$ from $0-50 \mathrm{~m}$ $\mathrm{~T}=10^{\circ} \mathrm{C}$ from 50 m down
(ii) Temperature constant
$S=20.0 \%$ from $0-50 \mathrm{~m}$
$S=35.5 \%$ from 50 m down

1. 3 Optical and Electrical Propertics

EXAMPLE 1.3.1 Attenuation of Light

(a) What causes the attenuation of incident light in pure water and in seawater? Is

$$
I=I_{0} e^{-\kappa z} \quad \begin{array}{rr}
(I=\text { intensity } \\
\kappa=\text { constant })
\end{array}
$$

an adequate general description of the attenuation? Why do ypu say so?
(b) Figure 1.1 shows the results of some measurements of the spectral attenuation coefficients. Using the results from (a), discuss Fig. 1.1 briefly and determine if the heat gain due to insolation is important at a depth of 5 m in the open ocean (extrapolation of the curves to the right in Fig. 1.1 is possible; the trend does not change throughout the infrared range).

Fig. 1.1: Spectral attenuation coefficients in pure water and different types of seawater. Fxom Sverdrup, et al., (1942).

EXAMPLE 1.3.2 Color of Seawater
The color of oceanic water masses is determined by the transparency D of seawater with

$$
D=100 \cdot e^{-x(\lambda) z}
$$

and by molecular scattering, the intensity I of which is characterized by

$$
I \sim \frac{1}{\lambda^{4}}
$$

(a) Using Fig. 1.1 , describe why clean ocean water has a blue color and why coastal waters tend to appear green.
(b) Which is the most important factor determining the color of seawater?
(c) Why does light scattering by particles only play a minor role in determining the color of the sea (if the particle concentration is not too high)?
(d) How would the color of oceanic and coastal water change if the spectrum of the incident light were cut off for wavelengths $\lambda \leq 0.55 \mu$?

EXAMPLE 1.3.3 Temperature Measurements from Air and Space

(a) Which physical process offers a possibility for remote sensing of ocean temperatures and which law describes this process? What basic assumptions are involved?
(b) From Wien's displacement law, find the wavelength λ_{e} at which maximurn emission occurs. Using Figure 2.1, decide whether λ_{e} is suitable for airborne or space borne sensing of ocean temperature. Assume a sea surface temperature of $\mathrm{T}=15^{\circ} \mathrm{C}$.
(c) Which sources of radiative energy contribute to the final signal of a radioneter, which senses radiation in bands from 3 to 4μ and 9 to 12μ and which is mounted on an aeroplane or on a satellite so that it faces a small area of the ocean surface? Taking the enissivity of the ocean surface to be 0.98 and the reflectivity of normal incident radiation to be 0.02 , make a qualitative statement about the accuracy of the remote teruperature sensing techniques.
(d) If the attenuation of infrared light in seawater is 4 orders of magnitude larger than for the visible part of the spectrum, give an order of magnitude estimate of the depth of the surface layer which effects the infrared radiative output from the sea surface (use the results from Example 1.3.2).

EXAMPLE 1.3.4 Electrical Conductivity of Seawater

Seawater is known to be a good clectrical conductor,
(a) From the structure of the water molecties, find the reason for the high conductivity values. How does conductivity depend on salinity, temperature, and pressure? (Give a qualitative answer.)
(b) Discuss the difficulties involved vith salinity determinations using conductivity and indaction cells. How are the cells calibrated?

EXAMPLE 1.3.5 Electromagnetic Method of Measuring Currents

The movement of seawater with the velocity \vec{V} through the stationary magnetic field H of the earth gives rise to electric potential gradients $\nabla \bar{\circ}$

$$
\begin{gathered}
\nabla \Phi=(\vec{V} \times \vec{H})-r \vec{I} \\
(r=\text { resistivity, } \vec{I}=\text { electric current density })
\end{gathered}
$$

(a) Assume a straight canal of width L, a current flowing through the canal with speed v, and two electrodes being mounted in the surface layer at. opposite places on the banks of the canal. Derive an expression for the current velocity as a function of the potential difference (in volts) between the electrodes. What fur ther information do you need for computing the current speed, and how could they be obtained?
(b) What else must be considcred if the electrodes are not installed at a fixed location but are towed behind a snip? Discuss the shortcomings of current measurements by means of a GEK (geonagnetic electrokinetograph), especially with respect to use in shallow water and in areas with a complicated vertical profile of current velocity.

1.4 Diffusion and Mixing

EXAMPLE 1.4.1 Richardson's Criterion

The Richardson criterion for maintaining turbulence in a stratified medium is given by

$$
R f=\frac{A_{d} g \frac{d \rho}{d z}}{A_{v} \rho\left(\frac{d u}{d z}\right)^{2}}<1 \text { (Richardson-flux-number) }
$$

where A_{d} and $A=$ coefficients of eddy diffusivity and eddy viscosity respectively.
(a) Discuss Rfin terms of potential and kinetic energy rates. Is A_{d} / A_{v} generally greater or smaller than 1 ?
(b) Using finite differences and a maximum Δz value of 40 meters, plot $\frac{A_{v}}{A_{d}}$ Rf $=R_{1}=1$ (Richardson-number) and indicate the turbulent regime. Let $\Delta \rho=10^{-3}$ and $10^{-2}, \rho=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$.

EXAMPLE 1.4.2 Approximations of Reynolds Stress Terms
Reynolds introduced the assumption $\Psi=\bar{\Psi}+\Psi^{\prime}$ (with $\Psi=\vec{V}, \rho, \mathrm{p}, \bar{\Psi}=$ time average, $\Psi^{\prime}=$ turbulent fluctuation) into the equation of motion. The equation, which results for the averaged field of motion, contains

$$
\nabla \cdot \vec{\rho} \overline{\vec{V}}^{\prime} \overrightarrow{\vec{V}}^{\prime}
$$

This term describes the friction due to turbulent velocity fluctuations in a flow with the average velocity $\overrightarrow{\vec{V}}$ and $\vec{\rho} \overrightarrow{\vec{V}} \vec{V}=T$ Reynolds stress tensor. For practical reasons, T is often approxin mated by

$$
\mathrm{T}=\mathrm{A} \overline{\mathrm{D}}
$$

where $\overline{\mathrm{B}}$ is the deformation tensor of the average velocity and A is a proportionality factor. This factor A is called the coefficient of eddy viscosity and is used either as a scalar, vector, or tensor.
(a) Discuss the significance of using A as a scalar, a vector, or a tensor to describe eddy viscosity.
(b) Why is A most frequently used as a vector?

EXAMPLE 1.4.3 Vertical and Horizontal Eddy Diffusivity
(a) The salinity distribution observed in the transition area between the Baltic and the North Sea was interpreted by Jacobsen as an equilibrium between horizontal advection and vertical turbulent diffusion.
(i) Find the appropriate equation (e.g., refer to Example 2.5.1) and calculate A_{z} from the data given in TABLE 1.6 . The average density of the water column is $1.02 \mathrm{~g} \mathrm{~cm}^{-3}$; the distance between stations A and B was 47 km .
(ii) Plot u, S at both stations and A_{Z} against depth.
(iii) Why do the low-salinity Baltic water and higher-salinity North Sea water essentially maintain their identities?
(b) The horizontal salinity distribution in the Irish Sea (see Fig. 1.2) can be described by horizontal advection due, to a current of speed u and eddy diffusion transverse to the current. Using a coordinate system oriented with u parallel to the x-direction and y normal to x, the horizontal eddy diffusivity A_{y} can be described by

$$
A_{y}=\rho u \frac{\partial s}{\partial r} / \frac{\partial^{2} s}{\partial y^{2}}
$$

Fig. 1.2: Mean isohalines for the Irish Sca. From Proudman, (1952).

TABLE 1.6
Vertical Distribution of Current, Velocity, and Salinfty
In the Kattegat

m	$\begin{gathered} \mathrm{u} \\ \mathrm{~cm} \sec ^{-1} \\ \hline \end{gathered}$	s ${ }^{\infty}$	
		Station A	Station B
0.0	7.4	18.1	18.2
2.5	5.0	18.3	18.7
5.0	0.8	18.6	19.1
7.5	- 4.8	19.5	19.5
10.0	-10.7	20.5	20.0
12.5	-15.5	23.6	23.4
15.0	-17.5	26.7	26.8
17.5	-17.6	28.3	29.1
20.0		-	-

Applying the formala to the vertices of the isohalines shown in Fig. 1.2, Ay can be estimated using

$$
A_{y}=\rho u \frac{1}{4} \frac{(\delta y)^{2}}{\delta x}
$$

for a vertex P, where δx is the distance from the vertex behind P to thet in front of P and δy is the intercept of the tangent at P made by the isohaline in front of P.

Using $u=1 \mathrm{~cm} \mathrm{sec}{ }^{-1}$, find A_{y} for the Irish Sea from Fig. 1.2 for isohalines $34.4,34.5$, and 34.6%.
(c) Explain the reason for the oxder of magnitude differences between A_{z} and A_{y} determined in (a) and (b).

EXAMPLE 1.4.4 Spatial Scale of Turbulent Frocesses

From the statistical theory of turbulence the relation

$$
A \sim L^{4 / 3}
$$

where $A=$ eddy coefficient, $L=$ length scale, e.g., diameter of eddy or depth of wind mixed layer, was derived by Weizycker and Heisenberg. The basic assumptions in this statistical theory are homogeneity (local independence) and isotropy (independence from rotation or reflection) of the statistical parameters.
(a) Discuss the order of magnitude range of the eddy coefficient in the oceans in terms of the proportionality relation given above.
(b) Discuss the validity of the assumptions for oceanic conditions.

1.5 Properties of Sea Ice

EXAMPLE 1.5.1 The Anoralous Density of Water
(a) Why does ice float? (Consider the molecular arrangements in water and ice.) What would happen to the climate if ice would behave like a normal solid phase?
(b) Discuss the effect of an ice cover on the vertical distribution of temperature in a water colum below it. Distinguish between a freshwater lake and the ocean..
(c) Is it possible to hinder the formation of ice by punping bottom water to the surface in the (i) North Sea; in the (ii) Baltic Sea?

EXAMPLE 1.5.2 Freezing and Aging of Sea Ice
(a) Discuss the formation of sea ice.under different environmental conditions as characterized by the data given in TABLES 1.7, 1.8, 1.9.
(b) Why does the porosity of sea ice increase with increasing age of the ice? How can this effect be used to explain the fact that the air content of sea ice from high saline ocean areas is larger than that from waters with lower salinities?

TABLE 1.7
Salinity of Young Sea Ice, Formed at Different Air Temperatures

| Air temperature $\left({ }^{\circ} \mathrm{C}\right)$ | -16 | -28 | -30 | -40 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Salinity of sea ice $\%$ | 5.64 | 8.01 | 8.77 | 10.16 |

TABLE 1.8
Vertical Salinity Distribution in a Sheet of Young Sea Ice

| Vertical distance from
 ice surface (cm) | 0 | 6 | 13 | 26 | 45 | 95 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S (6) of the ice | 6.74 | 5.28 | 5.31 | 3.84 | 4.37 | 3.17 |

TABLE 1.9
Specific Heat of Sea Ice

	-2°	-4°	-8°	-14°	-20°
2	2.57	1.00	0.63	0.54	0.52
4	4.63	1.50	0.76	0.57	0.55
8	8.76	2.49	1.01	0.64	0.60
10	10.84	2.99	1.14	0.68	0.62
15	16.01	4.24	1.46	0.77	0.68

NOTE: Tables 1.7, 1.8, 1.9 from Neumann and Pierson (1966).
EXAMPLE 1.5.3 Growth Rate of an Ice Sheet
Assume an ice sheet of thickness h. If it grows at a rate dh during a time interval dt, the released heat of fusion per unit volume, W, where

$$
W=\rho \lambda \frac{d h}{d t}
$$

must be transported upward by the heat flux through the ice, F, given by

$$
F=-\ell \frac{\mathrm{dq}}{\mathrm{dz}}
$$

where λ is the latent heat of fusion for ice of density p and thermal conductivity ℓ.
(a) Find an approximate formula which enables you to calculate the thickness h of an ice sheet from the time history of the surface temperature of the ice. Assume the temperature gradient in the ice to be linear and the lower boundary of the ice sheet be kept at the freezing temperature, $0^{\circ} \mathrm{C}$.
(b) What assumptions about the water underlying the ice sheet are necessary? Would a layer of snow on the ice affect the calculations?
(c) Calculate the thickness of an ice sheet which has grown for a period of 30 days at surface temperatures of $-15^{\circ} \mathrm{C}$. Use $\rho=0.917 \mathrm{~g} \mathrm{~cm}{ }^{-3}$, $\lambda=80 \mathrm{cal} \mathrm{g}^{-1}, \ell=0.006 \mathrm{cal}_{\mathrm{cm}}{ }^{-1} \mathrm{sec}^{-1} \mathrm{degr}^{-1}$.

2.1 Heat Transfer Ocean $\langle->$ Atmosphere

EXAMPLE 2.1.1 Equation of Heat Balance

Derive the heat balance equation for a water column of $1 \mathrm{~m}^{2}$ cross section, which stretches from the surface to the bottom of the ocean. Arrange the heat gain terms at the left side of the equation.

EXAMPLE 2.1.2 Radiation Balance

The short wave radiation from the sun has an intensity of $1.9 \mathrm{cal}_{\mathrm{cm}}{ }^{-2} \mathrm{~min}^{-1}$ at the distance of the earth's orbit. The earth emits $0.49 \mathrm{cal} \mathrm{cm}^{-2} \mathrm{~min}^{-1}$ in long wave radiation. Explain quantitatively whether the earth's temperature can remain constant for these radiation fluxes. (Acc. to v. Arx, 1962.)

EXAMPLE 2.1.3 Influence of Atmospheric Gases
Figure 2.1 gives the spectral absorption of atmospheric gasee.
(a) Using Wien's displacement law, indicate on Fig. 2.1 the wavelength bands of maximum solar radjation input ($\mathrm{r}_{\text {sun }} \sim 6,000^{\circ} \mathrm{K}$) and maximun earth's emission ($\mathrm{T}_{\text {earth }} \sim 287^{\circ} \mathrm{K}$).
(b) Explain the expressions "radiation window" and "green house effect."
(c) How would temperatures on earth change due to a slight decrease in solar radiation intensity?

Fig. 2.1: Spectral absorptivity of water vepor and other atmospheric gases. From v. Arx (1962).

EXAMPLE 2.1.4 Absorption of Radiation Energy
Assume the surface of an oceanic area to receive $295 \mathrm{cal} / \mathrm{cm}^{2}$ during the day and to emit $295 \mathrm{cal} / \mathrm{cm}^{2}$ during the night.
(a) Using $x=\frac{2.3}{D}\left(\log Q_{z}-\log Q_{z+D}\right)$ and TABLE 2.1, compute the diurnal temperature variations for depth intervals given in TABLE 2.1. For the specific heat of seawater use 1 cal $g^{-1}{ }^{\circ} \mathrm{C}^{-1} . \mathrm{Q}_{\mathrm{z}}=$ amount of heat available at depth z in cal $\mathrm{cm}^{-2}, \mathrm{D}=$ depth interval.
(b) Note the assumption involved.

TABLE 2.1
Extinction Coefficient x Per Meter for Oceanic Water Masses (After Sverdrup, et al., 1942)

Depth Interval

(m)	\dot{x}
$0-1$	1.080
$1-2$	0.230
$2-5$	0.159
$5-10$	0.120
$10-20$	0.094
$20-50$	0.083

EXAMPLE 2.1.5 Heat Storage Capacity (*2.2.1)

(a) The global annual temperature fluctutions can be approximated by a $2^{\circ} \mathrm{C}$ amplitude for a layer of 100 m depth in the ocean and a $7^{\circ} \mathrm{C}$ amplitude for a layer of 10 m depth of the land surface.

Find the annual heat storage capacity of ocean and land masses and compare it to the daily incoming radiation of 0.21 cal $\mathrm{cm}^{-2} \mathrm{~min}^{-1}$ at the earth's surface. How do you explain the different capacities?
(b) By what amount could the temperature of the "homogeneous" atmosphere (height $8,000 \mathrm{~m}$) be increased by using the heat which is annually stored in the oceans and in the land masses?
(c) Explain the following observation: During January the earth passes the perigee of her solar orbit and thus the heat gain of the earth's surface increases by 7\%. Despite this fact, the earth's surface has average temperatures of $12.5^{\circ} \mathrm{C}$ in January and $16.1^{\circ} \mathrm{C}$ in July.
(d) Figure 2:2 shows isopleths of the Atlantic Ocean surface temperatures.
(i) Why is the amplitude of seasonal temperature variation in the Atlantic greater in the Northern Hemisphere than in the Southern?
(ii) Why is the "thermal equator" (dotted 1 ine in Fig. 2.2) located in the Northern Hemisphere?

Fig. 2.2: Isopleths of surface temperature in the Atlantic Ocean. From Defant (1961).

Use the following values:

$\left.{ }^{2}{ }^{2}\right)$	Ocean	Land	Atmosphere
	360.8×10^{6}	149.3×10^{6}	
Density $\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.0	1.6	1.29×10^{-3}
Specifjc Heat $\left(\mathrm{cal} \cdot \mathrm{g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}\right)$	1.0	0.2	0.24

Whple 2.1.6 Temperature Difference Water-Air

(a) Why is the sea normally warmer than the air above it?
(b) Give examples where the converse is true.
(c) Areas in which the atmosphere is warmer than the sea are often hazardous to shipping. Why?

2.2 Heat Transfer in the Ocean

EXAMPLE 2.2.1 Energy of Oceanic and Atmospheric Girculation ($* 2.1 .5$)
(a) Calculate the heat energy which would be released if all oceanic and atmospheric circulation came to a standstill (consider only the released kinetic energy).
(b) Compare these results with the heat which the ocean and atmosphere receive per day by radiation.
(c) Compare the kinetic energy contained in the oceans and in the atmosphere with the latent heat contained by water vapor in the air.
(d) Although the kinetic energy of oceanic circulation is low compared to atmospheric circulation, why does the former have a pronounced effect on the latter?

Average speed (V)
Mass (m)
Area (A)
Radiation (Qi)
Water vapor content (M)
Heat of evaporation (L)
 $590 \mathrm{cal} / \mathrm{g}$

EXAMPLE 2.2.2 Meridional Net Heat Transfer

Sverdrup gives the following estimates of mass transport across the equator in the Atlantic Ocean.

Water Mass	Direction (towards)	Transport $\left(10^{6} \mathrm{~m}^{3} / \mathrm{sec}\right)$	Average Temper- ature $\mathrm{O}^{\circ} \mathrm{C}$)
Surface Water	N	6	25
Central Water	N	2	5
North Atlantic Deep Water	S	9	3
Antarctic Bottom Water	N	1	2
Calculate the net heat transport and its direction.			

EXMPLE 2.2.3 Advective Heat Transfer of the Gulf Stream
Assume that the Gulf Stream is $L=100 \mathrm{~km}$ wide, $\mathrm{D}=500 \mathrm{~m}$ deep and that its average speed if $V=150 \mathrm{~cm} / \mathrm{sec}$. The temperature of the Gulf Stream at $40^{\circ} \mathrm{N}$ is $\Delta T=4^{\circ} \mathrm{C}$ above the average for this latitude.
(a) Calculate the excess heat flux across $40^{\circ} \mathrm{N}$ by the stream per cm^{2} per second. Take the specific heat of water $c_{p}=1$ cal $g^{-1}{ }^{\circ} \mathrm{c}^{-1}$. From this heat flux, calculate the power in kilowatts of the Gulf Stream.
(b) Compare the kinetic energy of the stream with its excess heat content per unit mass.

EXAMPLE 2.2.4 Vertical Heat Conduction
The theory of heat conduction shows if the surface change in temperature has the simple form

$$
T_{0}=a_{0} \cos \frac{2 \pi t}{T}
$$

at depth z the temperature change is given by:

$$
T(t, z)=z_{0} \cdot e^{-\alpha z} \cdot \cos \left(\frac{2 \pi t}{T}-\alpha z\right)
$$

$\alpha=\sqrt{\frac{\pi}{A_{z} T}}, a_{0}=$ atoplitude of the temperature change at the surface, $T=$ period of the temperature change.
(a) Let $\cos \left(\frac{2 \pi t}{T}-\alpha z\right)=1$ and determine the depths at which the temperature change is $e^{-\pi}$ of its surface value: if $T=1$ day; if $T=$ 1 year.

In both cases use $A_{z}=1.3 \times 10^{-3} \mathrm{~cm}^{2} / \mathrm{sec}$ (nolecular thermal diffusivity); $A_{z}=30 \mathrm{~cm}^{2} / \mathrm{sec}$ (eddy thermal diffusivity).

Derive the general formulas first and then calculate the numerical answer. Work in the cgs system but give the answers in meters.
(b) At what depths is the phase 1 ag $180^{\circ}, 360^{\circ}$ compared to the surface change? Use $A_{z}=30 \mathrm{~cm} 2 / \mathrm{sec} ; T=1$ day, 1 year.
(c) At whet speed does the surface disturbance penetrate downwards? i.e., what is the phase velocity? Use $A_{z}=30 \mathrm{~cm}^{2} / \mathrm{sec} ; T=1$ day, 1 year.

EXAMPLE 2.2.5 Vertical Heat Transfer Due to Tidal Mixing
The vertical distribution of maximum tidal currents in shallow water can be described by

$$
\begin{align*}
u(z)=u_{0}\left(\frac{H-z}{H}\right)^{1 / 5} \quad(z & =0 \text { : surface } \tag{1}\\
z & =H \text { : bottom } \\
u_{0} & =\text { velocity at } z=0) .
\end{align*}
$$

Active vertical mixing in the presence of a density stratification takes place if
(2) $\quad R i=\frac{g}{\bar{\rho}} \frac{\frac{d \rho}{d z}}{\left(\frac{d u}{d z}\right)^{2}}<0.5 \quad$ (Ri $=$ 'Richardson" number)

The maximum vertical temperature gradient, which is created by downward penetration of heat_from diurnal insolation into an initially homogeneous water mass (\bar{T}, S), can be obtained from the heat conduction equation as

$$
\text { (3) } \frac{d T}{d z}=\sqrt{2} \beta \cdot T_{0} \cdot e^{-\beta z}, \quad \begin{aligned}
\beta & =\sqrt{\frac{p \pi}{A_{z} T}}, T=\frac{2 \pi}{1 \text { day }}, \\
T_{0} & =\begin{array}{l}
\text { amplitude of diurnal tem- } \\
\\
\end{array}
\end{aligned}
$$

(a) Determine the depth where the vertical density gradient created by diurnal insolation prevents vertical mixing due to a shearing tidal current. (Derive an expression for the critical vertical density gradient from (1) and (2). Convert the temperature gradients obtained from (3) into density gradients assuming constant salinity. Use 10 m - steps for computation.)
(b) Compute the current velocity which would maintain homogeneity of the entire water column.
(c) Explain the remarkable low amplitudes of the seasonal temperature variations in the English Channel area.

Use the following values (North Sea):
$\begin{array}{lll}H=60 \mathrm{~m} & A_{z}=100 \mathrm{~g} \mathrm{~cm} \\ \mathrm{~g}^{-1} \mathrm{sec}^{-1} & \bar{T}=12^{\circ} \mathrm{C} \\ u_{0}=0.7 \mathrm{~m} \cdot \mathrm{sec}^{-1} & \mathrm{~T}_{0}=0.2^{\circ} \mathrm{C} & \overline{\mathrm{S}}=35 \%\end{array}$

2,3 Water Transport Ocean $\langle>$ Atmosphere

EKMPLE 2.3.1 Meridional Distribution of Evaporation and Precipitation
Figure 2.3 gives the meridional distribution of surface salinity
and evaporation minus precipitation (E - P) for the world oceans.
(a) Discuss the close similarity of the S and E - P curves and the significance of the differences.
(b) Why is the salinity of the Atlantic Ocean higher than in the other oceans?

In answering, consider the complete water-budget equation:

$$
W=(E-P)+(F-M)+(G-L)+R
$$

where

> E = Evaporation
$P=$ Precipitation
$\mathrm{F}=$ Formation of ice
$\mathrm{M}=$ Melting of ice
$\mathrm{G}=\mathrm{Gain}$ by currents
$\mathcal{L}=$ Loss by currents
R = River run-off

Fig. 2.3: Mean meridional distribution of evaporation minus precipitation and surface salinity for the world ocean. After Wllst (1954).

EXAMPIE 2.3.2 Surface Salinity, Evaporation, and Precipitation
Plot the values given in TABLE 2.2 in a. S vs. (E - P) diagram.
(a). Is a lincar relationship between S and (E - P) justified? Base your explanation on the graph and on the processes determining S.

TABLE 2.2
Five Degree Zonal Averages of Precipitation, Evaporation, and Salinity (After Wtist)

No.	Latitude \qquad	$\begin{gathered} \mathrm{P} \\ (\mathrm{~cm} / \mathrm{yr}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{~cm} / \mathrm{yr}) \end{gathered}$	S\%0
1	N 55-50	105	55	33.41
2	50-45	112	66	33.69
3	45-40	102	84	34.14
4	40-35	86	108	35.41
5	35-30	74	125	35.50
6	30-25	63	132	35.76
7	25-20	57	137	35.64
8	20-15	70	135	35.14
9	15-10	103	132	34.78
10	$510-15$	94	139	35.42
11	15-20	76	137	35.62
12	20-25	68	133	35.74
13	25-30	65	123	35.68
14	30-35	70	110	35.46
15	35-40	90	96	35.04
16	40-45	110	78	34.54
17	$45-50$	117	56	34.14
18	50-55	109	39	33.96
19	55-60	84	12	33.94

EXAMPLE 2.3.3 Diurnal Salinity Variations

TABLE 2.3 gives hourly surface salinities averaged over several days at a Meteor station and an Altair station.
(a) What is the average daily variation of salinity at each station?
(b) What causes the maximum salinity in each case? Consider the difference in position of the stations.
(c) The decrease with depth of a salinity perturbation follows an exponential law similar to that of temperature (see Example 2.2.4). At what depth does the perturbation reach 0.002% at each station? Use an eddy diffusivity $\mathrm{A}_{\mathrm{z}}=30 \mathrm{~cm}^{2} / \mathrm{sec}$.
(d) Assume the period to be one year instead of one day. Calculate the depth at wich the ampiitude reaches 0.002%.
Why is such a depth not reached when a thertiocline is present?

TABLE 2.3

Variation of Salinity with Time of Day (After Defant)

$\begin{aligned} & \text { Local } \\ & \text { Time } \\ & \text { (Hours) } \end{aligned}$	$\begin{gathered} \text { METEOR STATION } \\ 2.1^{\circ} \mathrm{S}, 4^{\circ} \mathrm{W} \\ \hline \end{gathered}$	ALTAIR STATYON $44.5^{\circ} \mathrm{N}, 34.0^{\circ} \mathrm{W}$
1	35.468	35.860
3	35.466	35.866
5	35.464	35.887
7	35.464	35.876
9	35.466	35.882
11	35.470	35.889
13	35.480	35.885
15	35.490	35.893
17	35.504	35.913
19	35.486	35.900
21	35.474	35.883
23	35.466	35.879

EXAMPLE 2.3.4 Evaporation from the Mediterranean Sea
In the arid climate of the Mediterranean Sea, the heat-loss of the water to the air is $Q_{e}=65 \mathrm{cal} / \mathrm{cm}^{2} /$ day greater than in the equivalent latitudes of the Atlantic.
(a) If a dam were built across the Straits of Gibraltar, by how much would the level between the Mediterranean and the Atlantic differ in a year? (Neglect river discharge.)
(b) If a 100% efficient hydroelectric power station was built at the dam, how many kilowatt-hours of electricity could it produce per year? Area of Mediteiranean, $A=2.97 \times 10^{6} \mathrm{~km}^{2}$.
(c) How long would it be before the salinity in the Mediterranean increased to 38% Let the present average salinity, S, be 37% and average depth, H, be $1,500 \mathrm{~m}$.

2. 4 Mass Transport in the Ocean

EXAMPLE 2.4.1 Propagation of Surface Salinity Disturbances
The downward propagation of a positive or negative salinity anomaly spreading from the surface is approximated by

$$
\frac{A_{i}}{\overline{\tilde{\rho}}} \cdot \frac{\partial S}{\partial z}=(E-P) \cdot S_{2}
$$

Given $A_{z}=1 \mathrm{~g} \mathrm{~cm}^{-1} \sec ^{-1}, \mathrm{~S}_{0}=35.00 \%$ (salinity at the surface), $\bar{\rho}=1.02 \mathrm{~g} / \mathrm{cm}^{3}$, and assuming reasonable values for ($\mathrm{E}-\mathrm{P}$), calculate the salinity at a depth of 10 m at the end of one year in:
(a) an arid climate
(b) a humid climate.

EXAMPLE 2.4.2 Horizontal Salinity Distribution in an Estuarine Area

The horizontal salinity distribution in the German Bight (North Sea) is strongly influenced by the fresh water discharge of the Elbe and Weser rivers (see Fig. 2.4). A possible two-dimensional description is given by

$$
S(x, y)=S_{0}-\frac{M}{\sqrt[x]{A_{x} A_{y}}} \cos x \text { y } e^{-x x \sqrt{\frac{A}{A_{y}}}}
$$

where the fresh water run-off at $x=0, \Sigma(y)$, is

$$
\begin{aligned}
& \Sigma(y)=M \cos x y \text { at } 0 \leq y \leq y_{0} \text {, } \\
& \Sigma(y)=0 \text { at } y>y \text { 。 } \\
& \text { and } S_{0}=34 \%_{0} \text {. } \\
& \mathrm{M}=6.5 \times 10^{-3} \mathrm{~g} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}= \\
& \text { amount of salt to in- } \\
& \text { crease the salinity of } \\
& \text { the water masses with } \\
& \text { salinity } \mathrm{S}_{0} \\
& \mu=\frac{\pi}{2 y_{0}}, y_{0}=80 \mathrm{~km} \\
& A_{x}=2 \cdot 10^{6} \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{sec}^{-1} \\
& A_{y}=6 \cdot 10^{6} \mathrm{~g} \mathrm{~cm}^{-1} \mathrm{sec}^{-1} \\
& \text { (} A_{x} \text { and } A_{y} \text { are exchange co- } \\
& \text { efficients in } x \text { and } y \text { direc- } \\
& \text { tion (see Fig.). }
\end{aligned}
$$

Discuss and compute $S(x, y)$ for a grid $\Delta y=20 \mathrm{~km}, \Delta x=50 \mathrm{~km}$ and draw the isohalines from $29-33 \%_{0}$.

Fig. 2.4: Surface salinity distribution in the German Right. From Schott (1966).

2.5 Water Mass Identification and Formation

EXAMPLE 2.5.1 Distribution of Various Properties
The distribution of a scalar property s (e.g., temperature, salinity, oxygen, etc.) may be described by a functional relationship

$$
s=f(x, y, z, t)
$$

(a) Using a Taylor series expansion, derive

$$
\frac{d s}{d t}=\frac{\partial s}{\partial t}+u \frac{\partial s}{\partial x}+v \frac{\partial s}{\partial y}+w \frac{\partial s}{\partial z}
$$

and identify the various kinds of terms as well as the assumptions involved.
(b) Individual changes in s are mainly caused by mixing processes

$$
\frac{\partial}{\partial x}\left(\frac{A}{\rho} \frac{\partial s}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{A}{\rho} \frac{\partial s}{\partial y}\right)+\frac{\partial}{\partial z}\left(\frac{A^{\prime}}{\rho} \frac{\partial s}{\partial z}\right)
$$

or by biochemical processes ΣR.
(i) Include the expressions for mixing and biochemical processes in the formula derived under (a).
(ii) Explain the expressions "conservative" and "nonconservan tive" properties of seawater.
(iii) Which processes can affect the field of the scalar property s in the following cases:

$$
\begin{aligned}
& \frac{\partial s}{\partial t}=0, \frac{d s}{d t}=0, A_{x}=A_{y}=A_{z}=0, \Sigma B=0, u=v=w=0 \\
& \frac{\partial s}{\partial t}=\frac{\partial s}{\partial y}=\frac{\partial s}{\partial z}=0
\end{aligned}
$$

EXAMPLE 2.5.2 T-S Relationship
Local changes of a property s (e.g., temperature, salinity) with time due to mixing processes may be described by

$$
\frac{\partial s(x, t)}{\partial t}=A_{x} \frac{\partial^{2} s(x, t)}{\partial x^{2}}
$$

Using the initial condition

$$
s(x, t=0)= \begin{cases}s_{1} & \text { for }-\infty<x<0 \\ s_{0} & \text { for } 0<x<\infty\end{cases}
$$

the solution of the differential equation is

$$
s(x, t)=\frac{s_{2}-s_{2}}{2}\left[1-\Phi\left(\frac{x}{\sqrt[2]{A_{x} \mathrm{E}}}\right)\right]+s_{0}
$$

where

$$
\Phi(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \quad \text { (error function, erfc) }
$$

(a) Two water masses of equal densities are initially separated by a vertical wall. Their temperatures and salinities are T_{O}, S_{o}, and $\mathrm{T}_{1}, \mathrm{~S}_{1}$, respectively. At time $\mathrm{t}=0$ the separating wall i^{\prime} removed (treat the problem 1 -dimensional with the wall placed at $x=0,-\infty<x<+\infty)$. Find temperature and salinity of the mixed water mass at $x= \pm 0, \pm 10^{2}, \pm 2 \cdot 10^{2}, \pm 5 \cdot 10^{2}, \pm 10^{3} \mathrm{~cm}$ at the times $t=0,10^{2}, 9 \cdot 10^{2}, 10^{4}$, and ∞ seconds. Present the results graphically in an x, T-diagram and an x, S-diagram with t as the parameter.

Let $\quad T_{0}=0^{\circ} \mathrm{c} \quad \mathrm{S}_{0}=28 \% \quad \mathrm{~A}_{\mathrm{x}}=10^{2} \mathrm{~cm}^{2} \cdot \mathrm{sec}^{-1}$

$$
T_{1}=20^{\circ} \mathrm{C} \quad S_{1}=32 \%
$$

(b) Plot TS-diagrams for each instant by reading T and S values from $x=0$ to $x= \pm 10^{3}$ in $10^{2} \mathrm{~cm}$ intervals from the graph obtained under (a).
(c) Considering the preceding exercises, what is the practical use of a TS-diagram?
(d) How many water masses can you distinguish in the TS-diagram for a station in the western subtropical South Atlantic given in Figure 2.5? Identify them and give approximate temperature and salinity core values.

EXAMPLE 2.5.3 Application of the TS-Relationship
The TS-relationship is used to trace Atlantic water masses spreading into the Norwegian Sea. The two original water masses are defined as Atlantic: $T=10,2^{\circ} \mathrm{C}, \mathrm{S}=35.45 \%$; Norw. Sea: $\mathrm{T}=2.5^{\circ} \mathrm{C}$, $S=34.90 \%$. Plot these two TS-pairs in a TS-diagram and connect both points by a straight line. Divide this 1 ine into ten equal portions so that they mark fractions of $1 / 10+9 / 10,2 / 10+8 / 10$, etc., of each of the original water masses. If the TS-pairs from TABLE 2.4 are also plotted, for each depth one can read the fraction of Atlantic water observed at the corresponding station. The product of layer depth (difference in depth between two TS-observations) and average fraction of the inflowing water mass is called the "equivalent layer depth." Subsequent sumation for all depth intervals yields the total equivalent layer depth for one station.
(a) Sketch the distribution of the equivalent layer depths along the section given in TABLE 2.4.
(b) State the assumptions involved.
table 2,4
Temperature and Salinity for Norwegian Sea Stations'

EXAMPLE 2.5.4 Radioactive Tracers

Oceanic water mass circulation can be investigated by using radioactive substances with an appropriate decay time.
(a) State the assumptions which have to be fulfilled by a radioactive tracer in order to obtain information on the path and velocity of water mass spreading.
(b) Figure 2.6 shows the meridional distribution of ${ }^{14} \mathrm{C}$-concentrations in the western Atlantic Ocean. The numbers represent the average 14 C -concentrations given as 10%-difference from the agecorrected concentration of ${ }^{14} \mathrm{C}$ in 19 th-century atmospheric CO_{2}. The numbers at $z=0$ represent the ${ }^{14} \mathrm{C}$-concentrations of the corresponding water masses in the area of their formation. Determine the age of the different water masses by using the assumption that within 80 years the concentration of 14 C decreases by 1% of the amount avaflable.
(c) Does ${ }^{14} \mathrm{C}$ fulfill the assumptions stated under (a)? If the answer is yes, compute the velocities of spreading for the different water masses and compare the results to "classical" computations.

!ig. 2.6: Idealized distribution of water masses and average ${ }^{14} \mathrm{C}$ concentration in the western Atlentic Ocear. Afte: Broecker (1963).
$\because W:$ N. Atlantic Central Nater
\because G: N. Atlantic Intermediate Water
\because as: N. Atlantic Deep Water
$\because \%: N$ Atlantic Central Water
A\%: N. Atlantic Intermediate Water
:it: N. Atlantic Deep Water

SACW: S. Atlantic Central Water
AADW: Antaretic Intermediate Water AABW: Antarctic Bottom Water

MhPLE 2.5.5 Water Mass Formation in the Gulf of Naples
(a) From TAbles 2.5, 2.6, and 2.8, given belon, drat isopleth diagrams of temperature, salinity, and density months on the abscissa, depth on the ordinate; draw isopleths separated by one-tenth of $1^{\circ} \mathrm{C}$, $1 \%_{0} s$, and $1 \sigma_{t}$-tnit).
(b) When does spring warming begin? When does the thermocline begin to form? How do you explain the intermediate temperature minimun during the sumer?
(c) Explain the coincidence of maximum salinity ia Decerber with maximumprecipitation (TABLE 2.7) and the coincidence of mininum salinity in July with minima precipitation. Itat: In the following
budget relationship, consider only the first two terms:

```
\(S=f(E-P, C, M)\)
    \(E=\) Evaporation \(\quad P=\) Precipitation \(\quad C=\) Horizontal Advection
    \(M=\) Vertical Mixing
```

(d) State whether temperature or salinity has a more important effect on the density structure in the Gulf. To what depth does the vertical convection reach in winter? Show the region of homogeneity by cross-hatching in the density diagram.
(e) On what factors does the maximum depth of vertical convection generally depend?
(i) In the Gulf of Naples?
(ii) South of Greenland?
(iii) In the Central Baltic?
(f) Sketch an isopleth diagram of the temperature between $0-200 \mathrm{~m}$ for:
(i) A tropical sea whose temperature distribution remains constant during the year. A temperature difference of $10^{\circ} \mathrm{C}$ is found between 80 and 100 m . The surface temperature is $27^{\circ} \mathrm{C}$.
(ii) A sea which is completely mixed by tidal turbulence, e.g., the Irish Sea, for which surface temperatires (${ }^{\circ} \mathrm{C}$) are given in TABLE 2.9.
(g) What factors are decisive for the formation of:
(i) a thermocline
(ii) a halocline
(iii) a pycnocline

In each case give a characteristic example.
TABLE 2.5

-	1957												1958	
$2(\pi)$	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb
0	14.1	14.1	13.8	15.2	16.0	20.1	23.2	24.1	24.3	23.1	17.8	15.8	14.8	14.1
20	14.1	14.1	13.8	14.5	15.0	16.8	18.3	19.8	20.8	19.2	16.8	15.2	14.7	14.1
40	14.1	14.1	13.8	13.9	14.4	14.7	15.7	$16.3{ }^{\text {. }}$	16.7	17.2	15.9	15.1	14.6	14.1
60	14.1	14.1	13.9	13.8	13.9	14.4	14.9	15.0	15.5	15.2	15.4	15.0	14.6	14.1
80	14.1	14.1	13.9	13.8	13.8	13.9	14.0	14.2	14.3	14.7	14.7	14.8	14.5	14.1
100	14.1	14.1	13.9	13.8	13.8	13.8	13.9	13.9	13.9	14.0	14.3	14.3	4.5	1
120	14.1	14.1	13.9	13.8	13.8	13.8	13.8	13.8	13.8	13.9	14.0	14.0	14.3	14.5
140	14.1	14.1	13.9	13.8	13.8	13.8	13.8	13.8	13.8	13.8	13.9	13.9	14.0	4.1
160	14.1	14.1	13.9	13.9	13.9	13.9	14.0	14.0	13.9	13.9	13.9	13.9	14.0	
180	14.1	14.1	13.9	13.9	13.9	14.0	14.1	14.1	14.1	14.1				
200	14.1	14.0	13.9	13.9	14.0	14.1	14.1	14.1	14.1	1				

TABLE 2.6

	1957												1958	
z (m)	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb
0	37.7	37.6	37.6	37.7	37.7	37.3	37.1	37.4	37.8	37.9	37.9	38.0	37.9	37.8
20	37.7	37.6	37.6	37.9	37.8	37.7	37.5	37.6	37.8	37.9	37.9	38.0	37.9	37.8
40	37.7	37.6	37.6	37.9	37.8	37.8	37.7	37.7	37.8	37.9	38.0	38.0	37.9	37.8
60	37.7	37.6	37.7	38.0	37.9	37.8	37.8	37.8	37.8	37.9	38.0	38.0	38.0	37.8
80	37.7	37.7	37.8	38.0	37.9	37.9	37.9	37.8	37.9	38.0	38.1	38.0	38.0	37.9
100	37.7	37.7	37.9	38.0	37.9	37.9	37.9	37.9	38.0	38.2	38.2	38.1	38.0	37.9
120	37.7	37.7	37.9	38.0	38.0	38.0	38.1	38.1	38.2	38.3	38.2	38.1	38.0	38.0
140	37.7	37.8	38.0	38.0	38.0	38.1	38.1	38.1	38.3	38.4	38.3	38.2	38.1	38.1
160	37.7	37.8	38.0	38.1	38.2	38.2	38.2	38.2	38.4	38.4	38.4	38.3	38.2	38.2
180	37.8	37.9	38.0	38.1	38.2	38.4	38.4	38.4	38.5	38.5	38.5	38.4	38.3	38.3
200	37.8	37.9	38.1	38.2	38.4	38.4	38.4	38.4	38, 5	38.5	38.5	38.5	38.4	38.4

TABLE 2.7
Average Monthly Precipitation for the Gulf of Naples

	Jan	Feb	Mar	Apr	$\begin{array}{r} 19 \\ \text { May } \end{array}$	June	July	Aug	Sept	Oct	Nov.	Dec
Average rainfall in ma	94	71	74	74	51	38	18	23	74	135	114	119

TABLE 2.8

z (m)	1an-C-1957												1958	
	Jan	Feb	Mar	Apr		June	Ju14	Aug	Sept	Oct	Nov	Dec	Jan	Feb
0	28.3	28.2	28.3	28.0	27.8	26.5	25.5	25.4	25.7	26.1	27.6	28.1	28.3	28.3
20	28.3	28.2	28.3	28.3	28.1	27.7	27.1	26.8	26.7	27.2	27.8	28.3	28.3	28.3
40	28.3	28.2	28.3	28.5	28.3	28.2	27.9	27.8	27.8	27.7	28.1	28.3	28.3	28.3
60	28.3	28.2	28.3	28.6	28.5	28,3	28.2	28.1	. 28.0	28.2	28.2	28.3	28.4	28.3
80°	28.3	28.3	28.4	28.6	28.5	28.5	28.4	28.3	28.4	28.4	28.4	28.3	28.4	28.4
100	28.3	28.3	28.5	28.6	28.5	28.5	28.5	28.5	28.5	28.7	28.6	28.5	28.4	28.4
120	28.3	28.3	28.5	28.6	28.6	28.6	28.6	28.6	28.7	28.8	28.7	28.6	28.5	28.4
140	28.3	28.3	28.5	28.6	28.6	28.6	28.6	28.6	28.8	28.9	28.8	28.7	28.6	28.6
160	28.3	28.3	28.5	28.6	28.7	28.7	28.7	28.7	28.9	28.9	28.9	28.8	28.7	28.7
180	28.3	28.4	28.5	28.6	28.7	28.8	28.8	28.8	28.9	28.9	28.9	28.8	28.7	28.7
200	28.3	28.4	28.6	28.7	28.8	28.8	28.8	28.8	28.9	28.9	28.9	28.9	28.8	28.8

Jan	Mar	May	JuIy	Sept	Nov	Jan
8°	7°	8°	11°	12°	11°	8°

EXAMPLE 2.6.1 Thermohaline Surface Layer Circulation
$(* 3.5 .4)$
(a) Name the three driving forces of oceanic surface layer circulation caused by meridional temperature differences.
(b) Sketch qualitatively the distribution of the meridional components of the oceanic surface layer mass transport between $60^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{S}$, which is caused by the forces mentioned under (a).
(c) Add to the schematic diagram obtained under (b) the meridional distribution of the surface height which is due to the prevailing (geostrophic) surface current systems. From comparison of the distributions obtained in (b) and (c), state qualitatively to what extent the thermonaline circulation contributes to the observed current system. Give a thermodynamic reason.

EXAMPLE 2.6.2 Circulation Patterns of Adjacent Seas

Sketch the pattern of vertical and horizontal circulation between the ocean and an adjacent sea connected over a sill in: (i) an arid climate; (ii) a humid climate; and give examples of such circulation.

EXAMPIE 2.6.3 Maintenance of the Oceanic Thermocline
The oceanic main thermocline is considered to be generally maintained by the balance between turbulent downward diffusion of heat and upward advection of cold water.
(a) Use a simple relation (see Example 2.5.1) to compute the vertical velocity component from temperature observations. Assume A_{z} to be independent of depth.
(b) Using the temperature distribution given in TABLE 2.10 and $A_{z}=1 \mathrm{~cm}^{2} \mathrm{sec}^{-1}$, compute the vertical velocity which is necessary to keep the vertical temperature distribution stationary.
(c) Discuss briefly the shortcomings of the above-mentioned concept with regard to the occurrence of the main thermocline in the ocean.

TABLE 2.10
Mean Temperature Distribution

$2(\mathrm{~m})$	50	75	100	125	150	175	200	225	250
$T \mathrm{C})$	25.5	25.0	22.5	19.0	16.5	14.5	13.0	12.5	12.0

EXAMPLE 2.6.4 Thermohaine Circulation in the Norwegian and Greenland Sea
The curronts in the Greenland-iorwegian Sea area can be described in the following way: (i) The nain current systems tend to follow the margin of the Greenland-Norvegian basia with a cyclonic sense of rotation; (ii) around islands an anticyclonic circulation is observed.
(a) Attempt to explain these observations by using a thermohaline concept based on the fact that the climate of the NorwegianGreenland Sea area is humid.
(b) Are other explanations of the Norwegian-Greenland Sea circu* lation possible?

3.1. Hydrostatics

EXAMPLE 3.1.1 Gravity
(a) The effective force of gravity at the earth's surface is not directed toward the center of gravity of the earth. Explain by means of a sketch. Give equations for the accelerations involved.
(b) Assume that the earth was, at one time, spherical. Sketch the forces at latitude $\varphi=0^{\circ}, 30^{\circ}, 60^{\circ}$, and 90° which have led to the present shape of the earth.

EXAMPLE 3.i. 2 Distribution of Gravity

The acceleration of gravity, g, varies with latitude and depth (in cm) according to the following approximations:

$$
\begin{aligned}
& g_{0}=978.049\left[1+0.0052884 \sin ^{2} \varphi-0.0000059 \sin ^{2} 2 \varphi\right] \\
& g=g_{0}+2.303 \cdot z \cdot 10^{-6}
\end{aligned}
$$

(a) If the z-axis is directed vertically downwards from $z=0$ at the sea surface, calculate in dynamic meters the depth of the surface $z=1,000 \mathrm{~m}$ for latitudes $\varphi=0^{\circ}, 60^{\circ}$, and 90°. How much energy is necessary to raise a unit mass from 1,000 m to the surface?
(b) For latitudes 0° and 60° determine the relationship between dynamic and geometric depth at 1,000 and $10,000 \mathrm{~m}$. Is the latitude effect or depth effect more important?
(c) A column of water at latitude $60^{\circ} \mathrm{N}$ has a mean temperature of $4^{\circ} \mathrm{C}$ and a mean salinity of 35.00%. (For the computation of the mean density, use the arithmetic mean between surface and the given depth.) Calculate the pressure in dbar at 1,000 and 10,000 m.

EXAMPLE 3.1.3 Barotropic and Baroclinic Modes
Two parallel equiscalar surfaces with scalar fields L_{1} and L_{r} defined in the region R are described by $F\left(L_{1}, L_{2}\right)=0$. If, e.g., the field L_{1} represents pressure p or temperature T and $F\left(p, L_{2}\right)=0$ or $F\left(T, L_{e}\right)=0$, then the region R is called barotropic or thermotropic, respectively. L_{a} represents any other scalar fieid (density, salinity, etc.). If equiscalar surfaces intersect, e.g., $F\left(p, L_{2}\right) \neq 0$ or $\mathrm{F}\left(\mathrm{T}, \mathrm{L}_{2}\right) \neq 0$, then the region is called baroclinic or thermoclinic.
(a) Explain the use of the barotropic coefficient

$$
\Gamma_{\rho}^{p}=\left[\frac{\Delta \rho}{\Delta \rho}\right] \text { geon. }
$$

and the piezotropic coefficient $\gamma_{\rho}=\left[\frac{d \rho}{d p}\right]$ physical
(b) What media are described by $T_{\rho}^{p}=0, \gamma_{\rho}=0$?
(c) Discuss the possible vertical distributions of velocity in a
barotropic and a baroclinic ocean.

EXAMPLE 3.1.4 Stability Oscillations (*4.3.2)

If a particle in a linearly stratified, incompressible, inviscid ocean is displaced vertically and then released, it will oscillate with simple harmonic motion.
(a) By using a Taylor series expansion for the density ρ, evaluate the equation of motion for a water particle oscillating as follows:

$$
\zeta(t)=\zeta_{0} \cos (N t)
$$

(b) If you change the sign of the density gradient which you used for (a), what kind of solution is obtained for the equation of motion and what would happen to the water particie if it is displaced vertically?
table 3.1
(c) For a compressible ocean 50 0.0
\because.
$N=\sqrt{\dot{g}\left(E-\frac{g}{c^{2}}\right)}$ with 150 200 400 $\mathrm{E} \cong \frac{1}{\bar{\rho}} \frac{\partial \rho}{\partial z}$ (Stability, usually $\underset{\text { reported as } E \cdot 10^{8} \text {). }}{\rho}$

Compute the Brunt-vaisald frequency from stability values given in table 3.1. How important is the inconpressibility term?
(d) Describe qualitatively to what extent a neutrally buoyant Swallow float follows vertical internal weve motion, if the compressibility of the float is larger, equal, or less than the compressibility of seawater (neglect inertial effects).

3.2 Kinematics

Whitur 3.2.1 Dead Reckoning

- (a) Shon that surface currents can be computed from the following:

The noon position of a ship was determined by Loran as $52^{\circ} 25^{\prime} \mathrm{N}$, $42^{\circ} 16^{\circ} \mathrm{W}$. The course for the next 24 hours was 215° true and the log showed that 225 sea miles had been traversed by the time that the noon position for the following day was determined to be $49^{\circ} 44^{\prime} \mathrm{N}$,
$42^{\prime} \mathrm{W}$.
(b) What uncertainties are involved in this type of calculation?

EXAMPLE 3.2.2 Relative Current Measurements

Current observations were made from a drifting ship at the equator, and the following results were obtained;

$$
\begin{aligned}
\text { Depth of meter } & =100 \mathrm{~m} \\
\text { Current recorded by meter } & =188 \mathrm{~cm} / \mathrm{sec}, 101^{\circ} \text { True } \\
\text { Ship's drift } & =50 \mathrm{~cm} / \mathrm{sec}, 315^{\circ} \text { True }
\end{aligned}
$$

(a) What was the actual current at 100 m ?
(b) Give an example where this may have been observed.

EXAMPLE 3.2.3. Periodic and Nonperiodic Surface Currents (*4.5.3)
Observations of the speed and direction of surface currents were made routinely from a lightship in the North Sea. TABLE 3.2 gives one day's results averaged over two-hour periods. A moderately strong shouth wind was blowing at the time the observations were made.
(a) Using square millimeter graph paper and a suitable scale, draw a progressive vector diagran of the currents.
(b) Deduce from your diagram (i) whether the periodic current is tidal or inertial; (ii) the direction and strength of the mean flow; (iii) the probable cause of the mean flow.
(c) Assuming that the mean flow was constant during the period of observation, subtract it from the observed flow and plot the remaining current vectors from a common origin. Join the endpoints of the rose.

Surface Currents Observed from a Lightship in the Forth Sea

Time (Hours)	Direction (Degrees)	Current Speed
$0-2$	20	1.0
$2-4$	60	0.9
$4-6$	90	0.7
$6-8$	130	0.4
$8-10$	180	0.2
$10-12$	230	0.2
$12-14$	0	0.5
$14-16$	10	0.9
$16-18$	20	1.0
$18-20$	80	0.6
$20-22$	270	0.4
$22-24$		0.3

EXAMPLE 3.2.4 Equation of Continuity

Derive the continuity equation for a rectangular prism of fluid. How does the resulting equation simplify for an incompressible
fluid?

EXAMPLE 3.2.5 Estimation of Vertical Velocity
The mean horizontal current components ($\mathrm{cm} / \mathrm{sec}$) in the upper 50 of an ocean have been averaged over five-degree squares and are shown in Figure 3.1.
(a) Estimate the vertical velocity at 50 m in each of the five-degree squares.
(b) What assumptions have you made, and why may your answer be erroneous?

Fig. 3.1: Horizontal current components, averaged for four 5 -degree

f.MMPLE 3.2.6 Flow Through a Constriction

Water of constant density flows in a canal which has vertical sides and a flat bottom, but varies in width as shown in Figure 3.2. Using the continuity equation and Bernoulli's equation, calculate the depth and the velocity of water in the constriction. (You should obtain a cubic equation.)

Fig. 3.2: Flow through a constriction ($\mathrm{H}=$ water depth) .

EXAMPLE 3.2.7 Inflow into the Red Sea
Assume the Red Sea to be $2,000 \mathrm{~km}$ long, the Suez Canal closed, and the Straits of Bab el Mandeb to be one-tenth the average width of the sea. If surface evaporation exceeds precipitation by $1 \mathrm{~cm} / \mathrm{day}$ and incoming. flow is confined to the upper 50 meters, calculate the speed of the flow in cm/sec.

3.3 Dynamics

EXAMPLE 3.3.1 Acting Forces

(a) Separate the forces which generate and which influence the motion of a particle on the rotating earth into distinct categories and give examples of their effect on motion in the sea (excluding tides).
(b) Which of these forces can generate currents in a (i) homogeneous, frictionless ocean, (ii) homogeneous ocean with friction, (iii) inhomogeneous, frictionless ocean, (iv) inhomogeneous ocean with friction, (v) two-layered ocean with friction?

The dynamic depth of a level surface is given by

$$
D=\frac{\mathrm{gz}}{10} \quad(\mathrm{dyn} . \mathrm{m} .)
$$

where $g_{0}=9.78049\left(1+0.005288 \sin ^{2} \varphi-0.000006 \sin ^{2} 2 \varphi\right)\left[m / \sec ^{2}\right]$
$g=g_{0}+2.303 \cdot 10^{-6} \cdot z$. What happens to a sphere which is located near the equator (a) on a surface of equal depth, and (b) on a surface of equal potential? Discuss both cases for a nonrotating and for a rotating earth. (Assume the surfaces to be plane, rigid, and frictionless.)

EXAMPLE 3.3.3 Coriolis Acceleration ($\% 4.4 .4$)
(a) A plumb of mass mangs on a 2 meter cord inside an airplane traveling eastward along the $60^{\circ} \mathrm{N}$ parallel of latitude at an altitude of 1,000 meters and a speed of $1,000 \mathrm{~km} / \mathrm{hr}$. At what angle to true vertical does the plumb line stand and in which direction? What would happen at $60^{\circ} \mathrm{N}$ if the airplane travels along the 0° meridian in a southernly direction with the same speed and altitude as before?
(b) What would happen, under momentarily the same condicions; to che plumb line in a free flying projectile having a speed of $3,000 \mathrm{~km} / \mathrm{hr}$?
(c) A particle of mass M travels due east at the equator with sped
V. . It is momentarily displaced to a position 1,000 meters north of the equator. Describe its subsequent motion (frictionless).

EXAMPLE 3.3.4 Deflection of a Moving Body

A billiard table is 250 cm long. Two billiard balls, 4 cm in diameter, are placed at opposite ends of the table. Neglecting friction, how fast does one ball have to be propelled initially directly towird the other in order to just barely miss the second ball due to the Coriolis force? The table is located at $43^{\circ} \mathrm{N}\left(f=10^{-4} \mathrm{sec}^{-1}\right)$. (Acc. to Hess (1959), Introduction to Theoretical Meteorology.)

EXAMPLE 3.3.5 Inertial Motions

The inertial period due to the earth's rotation is defined by

$$
T=\frac{\pi}{|\Omega| \sin \varphi} \text { or } \frac{12^{h}}{\sin \varphi}
$$

(a) At whe tatitudes are the inertial periods in resonance with the semi-diurnal lunar tide, M_{2}, and the diurnal lunar tide, O_{1} ?
(b) What is the shortest inertial period that an ocean curreat can have?
(c) Give graphically the distribution of inertial periods for latitudes between the equator and the'pole.

3.4 Equation of Motion

EXAMPLE 3.4.1 Equation of Motion
The equation of motion is given by

$$
\frac{\partial \vec{V}}{\partial t}+\vec{V} \cdot \vec{\nabla}-2 \vec{\Omega} \times \vec{V}=-\frac{l}{\rho} \nabla_{p}+g \vec{k}+\vec{K}+\vec{R}
$$

(a) Give the component equations of motion.
(b) Simplify the equation of motion for (i) geostrophic, (ii) ageostrophic, (iii) cyclostrophic motions and sketch a vector diagram for each case.
(c) Explain, by means of a sketch, why the velocities in current fields with equal cyclonic and anticyclonic curvature are different, although the pressure gradients are identical.

EXAMPLE 3.4.2 Geostrophic Motion

Assuming that the Coriolis parameter can be expressed as a function of the y-coordinate, find the equation of the streanline of a parcel of water leaving the equator fowards the northern hemisphere with a constant pressure gradient per unit mass (Pp) directed from south to north. There is no friction.

EXAMPLE 3.4.3 Vorticity

Vorticity, σ, is defined $\zeta=\left(\operatorname{curl}{ }^{-}\right)_{z}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}$
The sigri of G is determined as follows:
for rotation contra solem $\zeta>0$
for rotation cur sole $\quad \zeta<0$.
By theans of a sketch, show how it is possible that $\frac{\partial v}{\partial x} \geq 0$ for $u=0$.

FAhmine 3.4.4 Vorticity Equation, Potential Vorticity
(a) Derive the "vorticity equation"

$$
\frac{d}{d t}(f+\zeta)+(f+\sigma) \nabla_{n} \cdot \vec{V}=0
$$

where $\quad \zeta=$ relative vorticity, $(\zeta+f)=$ absolute vorticity from
$\frac{d u}{d t}-f_{v}=-\frac{1}{\rho} \frac{\partial p}{\partial x}$

$$
\frac{d v}{d t}+f u=-\frac{1}{\rho} \frac{\partial p}{\partial y}
$$

(b) Using the continuity equation, derive from the vorticity equation

$$
\frac{d}{d t}\left(\frac{f+G}{D}\right)=0 \quad \text { or } \quad \frac{f+\zeta}{D}=0 \quad \text { resp. (potential vorticity) }
$$

for a homogeneous layer of depth D.
(c) Consider the possible changes of a cyclonic eddy formed off Valparaiso and carried away by the Peru Gurrent. What would happen to an anticyclonic eddy under the same circunstances?
(d) A frictionless turntable is mounted on a railway car which runs on a meridional, frictionless track from the north pole to the south pole: (i) give a qualitative description of the motion of the turntable; (ii) what would happen to a motionless car at $60^{\circ} \mathrm{N}$ if the tuxntable were rotated cum sole? (Acc. to v. Arx, 1962.)

3.5 Applications of the Equation of Motion

EXAMPLE 3.5.1 Geostrophic Current Calculation

(a) Derive the following two expressions for geostrophic current calculations:

$$
\begin{aligned}
& c_{g}=\frac{g}{f}\left(\frac{{ }^{z} A-{ }^{Z} B}{L}\right)_{p}=\text { const. } \\
& c_{g}=\frac{10}{f L}\left[(\Delta D)_{A}-(\Delta D)_{B}\right]
\end{aligned}
$$

Where $c_{g}=$ geostrophic current velocity component normal to a section between two hydrographic stations A and B.
$\Sigma=$ distance between hydrographic stations A and B.
$A D=$ dynamic depth anomaly of the reference level.
(b) Compute c_{g} relative to the 500 dbar-level, where no motion is assumed. Use $L=50$ kiloneters
$(\Delta D)_{A}=0.837 \mathrm{dynm} \quad \varphi=30^{\circ} \mathrm{N}$
$(\triangle \mathrm{D})_{\mathrm{B}}=0.941 \mathrm{dyn} \mathrm{m}$

Compute the corresponding inclination of the sea surface between A and B in $\mathrm{cm} / \mathrm{km}$.

EXAMPLE 3.5.2 Geostrophic Current Distribution
From TABLE 3.4 calculate the geostrophic velocities at the given depths between successive pairs of stations. Draw a vertical section (profile) of velocities between Australia and Antarctica. Assume a level of no motion at 3000 meters.

TABLE 3.4
R. S. DISCOVERY Stations along 135° E Between Australia and Antarctica

	Dynamic height in centimeters at Station Numbers...............						
z (m)	895	894	893	892	891	890	889
0	000.0	000.0	000.0	000.0	000.0	000.0	000.0
250	034.7	033.4	033.1	028.5	024.1	018.8	017.3
500	065.3	063.5	061.3	051.0	041.7	031.1	029.0
750	095.0	093.6	085.4	069.9	055.8	041.7	039.0
1,000	120.7	121.2	106.1	085.8	067.9	05 L .3	048.3
1,500	158.3	164.0	139.2	111.8	088.7	068.8	065.0
2,000	185.7	194.2	164.6	134.0	107.6	085.7	081.2
2,500	208.5	219.2	186.3	153.7	125.1	101.0	096.6
3,000	229.7	242.4	207.4	172.9	141.6	115.0	110.5
Latitude	$43^{\circ} 16^{\prime} \mathrm{s}$	$46^{\circ} 32 \cdot \mathrm{~S}$	$49^{\circ} 37^{\prime} \mathrm{s}$	$52^{\circ} 49^{\prime} \mathrm{s}$	$56^{\circ} 031 \mathrm{~s}$	$59^{\circ} 05^{\prime} \mathrm{S}$	$61^{\circ} 45^{\prime} \mathrm{S}$

EXAMPLE 3.5.3 Estimation of Surface Currents

From a rapid BT-survey along $30^{\circ} \mathrm{N}$ latitude, you are asked to make an estimate of the surface layer current velocities. How would you proceed, using the following results and assumptions given in Figure 3.3? Calculate the mean velocities between A and \mathscr{P} and B and c.

Fig. 3.3: Distribution of pyenocline depth along $30^{\circ} \mathrm{N}$.

According to Eknan, the velocity distribution of a pure drift current is given by

$$
\begin{aligned}
& u=v_{0} \cdot e^{-\frac{\pi z}{D}} \cdot \cos \left(45^{\circ}-\frac{\pi z}{D}\right) \\
& v=v_{0} \cdot e^{-\frac{\pi z}{D}} \cdot \sin \left(45^{\circ}-\frac{\pi z}{D}\right)
\end{aligned}
$$

where $D=\sqrt{\frac{2 A}{\rho f}}$ (Depth of frictional influence)

$$
V_{0}=\frac{T}{\sqrt{2 \rho J A_{z}}}
$$

where $T=$ windstress in the y-direction
(a) If the coefficient of eddy viscosity has relative values of $A_{z}=4$ and $A_{z}=16$ respectively, how is the value of D affected?
(b) How are direction and speed affected at $z=D$?
(c) Find the expressions for the transport components in a winddriven current between the surface and the depth of frictional influence by integration of the velocity components.
(d) Using the results from (c) on the direction of the mass transport in a wind-driven current, derive a schematic diagram of the meridional distribution of the height of the sea surface between $45^{\circ} \mathrm{N}$ and $45^{\circ} \mathrm{S}$ from the corresponding findstress distribution. Relate this diagram to the observed surface current systems.

EXAMPLE 3.5.5 Sverdrup-Relation
Equations (1) - (3) are the basis for the so-called Sverdrup-Relation.

$$
\begin{align*}
& -f M_{y}=-P_{x}+T x \mid z=0 \tag{1}\\
& \mathrm{fM}_{x}=-P_{y}+T y \mid z=0 \tag{2}\\
& M_{x x}+M_{y y}=0 \tag{3}
\end{align*}
$$

Familiarize yourself with the given system of equations.
(a) Derive the Sverdrup-Relation.
(b) Which axe the underlying assumptions made when compared to the complete equations of motion?
(c) Discuss the balance of terms in the Sverdrep-Relation and indicate where this relation ray he valid in the real ocean.
(d) Split M_{K} and M_{y} into an Elkman-transport component and a geostrophfc transport component and discuss interplay between both components.

EXAMPLE 3.5.6 Wind-driven Ocean Circulation

It has been shown that the wind-driven circulation in a homogeneously stratified rectangular ocean basin of constant depth H can be approx-
imated by

$$
\Psi(x, y) \sim X(x) \cdot \frac{\partial r_{x}}{\partial y}
$$

where $\quad \psi=$ transport function

$$
\begin{aligned}
X(x) & =\text { asymmetric distribution in East-West direction } \\
T_{X} & =\text { zonal windstress component, } x=\text { eastward, } y=\text { northward }
\end{aligned}
$$

The theory shows that the number of gyres depends on the meridional distribution of the zonal component of the windstress. Assume a pertinent driving windstress to be of the form

$$
T_{x}=-T_{0} \cdot \cos \frac{n \pi}{b} y
$$

where b given in Fig. 3.4.

Sketch the distributions of the curl of the stress and the corresponding streamines for the cases $n=0,1,2$.

EXAMPLE 3.5.7 Western Boundary Currents

The function

$$
x(x)=-\frac{2}{\sqrt{3}} e^{-\frac{k x}{2}} \cdot \cos \left(\frac{\sqrt{3}}{2} k x-\frac{\pi}{6}\right)+1
$$

represents the theoretical distribution of moridional transport through the western part of a model ocean where $k=\sqrt[3]{\frac{\beta}{A_{X}}} \quad \beta=\frac{\partial f}{\partial y}$
For $A_{x}=5 \times 10^{7} \mathrm{~cm}^{2} \sec ^{-1}$, this distribution is given in Figure 3,5 ,

Fig. 3.5: Plot of function $X(x)$ giving west-east variation in transport. After Stommel (1965).
where part I may be thought to represent the Gulf Stream and part II a countercurrent.

Discuss how amplitude and width would vary with values:
$A_{x}=10^{6} \mathrm{~cm}^{2} / \sec ; A_{x}=10^{9} \mathrm{~cm}^{2} / \mathrm{sec}$

EXAMPLE 3.5.8 Topographic Influences on Zonal Currents

From the vorticity equation (see Example 3.4 .4) one obtains the following expression

$$
\begin{equation*}
\frac{d \zeta}{d t}=-\beta v-(\zeta+f) \quad \nabla_{h} \cdot \vec{V} \tag{1}
\end{equation*}
$$

with $\beta=\frac{\partial f}{\partial y}$
(a) What assumptions were made to derive equation (1)?
(b) Discuss the horizontal field of streamlines in a zonal flow, crossing a ($\mathrm{N}-\mathrm{S}$ infinite) barrier as shown in Figure 3.6.

Fig. 3.6: Zonal flow over a barrier.
(c) Give examples of the occurrence of this type of current deflecm tion (consider also atmospheric flows).

4.1 General Properties and Classification of Waves

EXAMPLE 4.1.1 Basic Properties of Harmonic Haves

Two progressive harmonic waves are described by

$$
\begin{aligned}
& \xi_{I}(x, t)=a_{1} \sin \left(\mu_{1} x-\omega_{1} t\right) \\
& \xi_{2}(x, t)=a_{a} \sin \left(\mu_{2} x-\mu_{2} t\right)
\end{aligned}
$$

(a) Superimpose both waves and specify $\mu_{1}, \mu_{2}, \omega_{1}, \psi_{2}$ in order to obtain a progressive wave and a standing wave (take $a_{1}=a_{3}$).
(b) Define the terms phase velocity and group velocity and derive their analytical form using the results from (a).
(c) Show that the total energy per unit area of a progressive wave is twice that of a standing wave.

EXAMPLE 4.1.2 Classification of Surface Waves

From the theory of waves at the air-sea interface, the following expression for the phase velocity can be derived

$$
c^{2}=\left[\frac{g \lambda}{2 \pi} \frac{\rho-\rho^{\prime}}{\rho}+\frac{\alpha}{\rho+\rho^{\prime}} \frac{2 \pi}{\lambda}\right] \tanh \frac{2 \pi}{\lambda} H
$$

($\rho=$ density of water, $\rho^{\prime}=$ density of air, $\alpha=$ surface tension)
(a) Find the phase velocities for capillary waves, short waves, and long waves and state their dispersion behavior.
(b) Find analytical descriptions for the vertical distribution of the orbital paths of water particles for free harmonic short and long progressive waves if

$$
\begin{aligned}
& u=-\mu a \cosh u\left(z_{0}-H\right) \sin \left(u x_{0}-\omega t\right) \\
& w=x a \sinh x\left(z_{0}-H\right) \cos \left(u x_{0}-\omega t\right)
\end{aligned}
$$

(x_{0} and z_{0} may be used instead of $x(t)$ and $z(t)$ due to the assumption of small amplitude waves)
(c) Find analytically the vertical and horizontal distribution of the orbital paths of water particles for short and long standing waves if

$$
\begin{aligned}
& u=-x a \cosh \mu\left(z_{0}-H\right) \sin \mu x_{0} \cos \omega t \\
& \omega=x a \sinh x\left(z_{0}-H\right) \cos \mu x_{0} \cos \omega t
\end{aligned}
$$

(d) Illustrate the results obtained from (b) and (c) by simple graphs and give examples of the different type of waves.

EXAMPLE 4.1.3 Classification of Internal Waves

Internal wave motion is frequently described by a second-order partial differential equation for the vertical velocity component w. For sinusoidal internal waves of frequency ω in an incompressible, stably stratified ocean, without mean current the character of the differential equation is determined by the factor

$$
\mathrm{q}(\mathrm{z})=\frac{\mathrm{N}^{2}(\mathrm{z})-\omega^{2}}{\omega^{2}-f^{2}}
$$

For $\mathcal{q}(z)>0$ (hyperbolic case), the solutions of the eigenvalue problem for w represent "ordinary" internal waves, i.e., the vertical amplitude distribution of w reaches its extremum in the interior of the interval $0 \leq z \leq H$. If $q(z)<0$ in any depth intervals $0 \leq z \leq h_{1}, h_{2} \leq z \leq H$, (elliptic case), the solution yields an exponentially decaying amplitude within these intervals and the resulting internal wave motions are frequently called "improper."
(a) Find the limiting periods for ordinary internal waves in the cases $\omega \lessgtr f$.
(b) Explain the following observations: Bj. Helland-Hansen observed in the latitude zone between $30^{\circ} \mathrm{N}$ and $74^{\circ} \mathrm{N}$ in the Atlantic Ocean semidiurnal internal waves at all depths, whereas he observed diurnal internal waves only in the deepest layers.
(c) Illustrate the results from (b) by a z vs. w plot. Use arbitrary amplitudes for w.
(d) Long and short internal waves are usually cheracterized by $N^{2} \gg w^{2}$ and $f^{2} \ll w^{2}$. What assumption makes this classification meaningful?

EXAMPLE 4.1.4 Wave Recording by Pressure Sensors
Assume a pressure gauge is mounted on the sea floor.
(a) List the phenomena which will be recorded. For each of the phenomena listed, name a location where extreme values will be observed. (No restrictions to length of record and instrumental accuracy.)
(b) Use the Bernoulli equation

$$
\frac{\partial \bar{s}}{\partial t}+\frac{\mathrm{p}}{\rho_{0}}-\mathrm{gz}=0 \quad\left(\rho_{0}=\text { constant }\right)
$$

and the velocity potential for free progressive, harmonic surface waves

$$
t=a \cosh x(z-H) e^{i(x x-\omega t)}
$$

to derive an expression for the pressure p at the pressure gauge. Is there any frequency dependence of the recorded amplitudes of long and short waves?

4.2 Surface Waves (Nontidal)

EXAMPLE 4.2.1 Short and Long Surface Waves

Consider a train of waves with period $T=10 \mathrm{sec}$. The speed with which a wave travels in deep water is given by

$$
c_{s}=\sqrt{\frac{g \lambda}{2 \pi}}
$$

(a) Find the speed of the wave in deep water.
(b) Find the wavelength in deep water.
(c) Using the approximation that the speed of a wave in shallow water is given by $c_{1}=\sqrt{\mathrm{gH}}$ show that the wavelength in shallow water is lees than the wavelength in deep water for waves of the same frequency.
(d) Using

$$
c=\sqrt{\frac{g}{x} \tanh (x H)}
$$

compute c / c_{s} and c / c_{1} for ratios $H / \lambda=0.05,0.075,0.10,0.25,0.50$. Plot $c / c_{;}$and c / c_{1} against H / λ on graph paper and find from the curves to what ratios $H / \lambda, c_{5}$, and c_{1} can be used instead of c, permitting a 5% error.
(e) Show why surf reaches a sloping beach parallel to the shore.

EXAMPLE 4.2.2 Energy Dissipation
(a) The empirical formula $E_{D}=2 A_{z} H^{2} g^{2}$ gives approximately the loss of the total energy for sea waves ${ }^{\circ} f$ the steepness $\delta=2 a / \lambda$ due to the turbulent viscosity.
(i) Give an example which supports the above representation.
(ii) Describe qualitatively the decay of a wind generated wave field after the wind suddenly stops blowing.
(b) A wave train approaches a gently sloping beach. Assuming wave period and forward flow of energy to be conserved, discuss qualitatively
the process of nearshore energy dissipation of ocean waves. Nake use of the phase-velocity relation for shallow water waves

$$
c=\sqrt{g(\xi+H)}
$$

which is valid for $\lambda \gg H$, but not necessarily $2 a \ll H$.

EXAMPLE 4.2.3 Storm Surges
An observer notices the arrival of a dispersive train of waves from a storm at some distance. Ten hours after waves of 15 -second period are observed, waves of 14 -second period are observed. Assuming a point source in space and time (a) how long ago did the.storm occur? (b) at what distance from the observer?

EXAMPLE 4.2.4 Seiches
Figure 4.1 shows time series of sea level variations for different locations in the Baltic Sea (location 1: northeasternmost gauge; location 8: southwesternmost gauge, see convenient map).
(a) From $c=\frac{\lambda}{\tau}$ (where $\tau=$ period of the basic eigenoscillation of an enclosed rectangular basin of length ℓ and mean depth H), find τ as a function of and H .
(b) Interpret Fig. 4.1 and use Merian's formula for an estimation of the mean depth of the Baltic basin (use $\ell=1,450 \mathrm{~km}$; estimate T from Fig. 4.1).

Fig. 4.1: Sea level fluctuations at eight locations in the Baltic Sea. From Dietrich (1963).

4. 3 Internal Vaves (Nontidal)

EXAMPLE 4.3.1. Internal Boundary Layer Waves
Assume two superposed liquids of density ρ_{1} and $\rho_{2}\left(\rho_{2}>\rho_{1}\right)$ which are otherwise unlimited. If the oscillations of the boundary are
described by $\quad \xi=a \cos \mu x e^{i \omega t}$
the velocity potentials δ_{1} of the upper and the lower layer are given by

$$
\begin{aligned}
& \Phi_{1}=a_{1} e^{-x z} \cos x x e^{i \omega t} \\
& \Phi_{2}=a_{2} e^{x z} \cos x x e^{i \omega t}
\end{aligned}
$$

where the origin of z is at the mean level of the boundary and $-\mu a_{2}=\mu a_{1}=i \omega a$
(a) Using the definition of the velocity potential, $\vec{V}=\nabla \Phi$, sketch the distribution of streamlines for an instant $t=t_{0}$ in the x, z-plane. (Using $u / w=\Delta x / \Delta z$, draw the streamines for several locations in the $x, z-p l a n e$.
(b) From (a) explain the phenomenon of "dead water" (disregard the infinite thickness of the upper layer).

EXAMPLE 4.3.2 Scaling Considerations (*3.1.4)

The simplest linearized equation describing internal waves is given by

$$
\frac{d^{2}}{d z^{2}}+\left\{\frac{N^{2}(z)-w^{2}}{\omega^{2}}\right\} x^{2} v=0
$$

with $w=W(z) e^{i(\kappa x-\omega t)}$
(a) Defining a local vertical length scale of the motion

$$
\mathrm{L}_{\mathrm{z}}=\left[\frac{\underline{W}}{W^{\pi}}\right]^{\frac{1}{2}}
$$

and a local horizontal length scale

$$
L_{H}=\frac{1}{\kappa}
$$

find an expression for L_{H} / L_{i} from the given differential equation. (b) Discuss the spatial distribution of low freguency ($\mathbb{\omega} \ll \mathbb{N}(z)$) and high frequency ($0 \approx \pi(z)$) disturbances:

EXAMPLE 4.3.3 Method of Observation
The vertical velocity component w is frequently used for the analysis of internal vave notions. However, the direct observation of w involves numerous conplications. Therefore, w is indirectly determined using a conservative parameter $\Psi(x, y, z, b), ~ e . g .$, Lenperature,
salinity, density, etc.
(a) Derive

$$
w=-\frac{\frac{\partial \Psi^{(1)}(x, y, z, t)}{\partial t}}{\frac{\partial \Psi^{(0)}(x, y, z)}{\partial z}} \text { from } \frac{d \Psi(x, y, z, t)}{d t}=0
$$

and discuss the assumptions made. Use

$$
\begin{gathered}
\Psi(x, y, z, t)=\Psi^{(0)}(x, y, z)+\Psi^{(1)}(x, y, z, t) \\
\text { observation } \quad \text { mean } \quad \text { perturbation }
\end{gathered}
$$

where $\left|\Psi^{(1)}\right| \ll\left|\Psi^{(0)}\right|$
(b) Try to explain why the choice of $\Psi^{(0)}$ and, consequently, $\Psi(1)$ depend's on the spatial scale of the problem to be investigated.
(c) Which phenomena are likely to cause differences in computing w from the depth variations of an isoline $\Psi=$ const compared to measuring the variations of Ψ at a fixed level. $z=$ const?

EXAMPLE 4.3.4 Energy of Internal Waves

The total energy per unit area of internal gravity waves of order n is given by

$$
E_{n}=\frac{1}{8} \cdot \bar{\rho} \Gamma_{0} a_{n}^{2} H
$$

For surface waves it was found that

$$
E_{0}=\frac{1}{4} \cdot \rho g a_{0}^{2}
$$

(a) Assuming the maximum internal wave amplitudes to be $1 / 10$ of the depth interval available ($a_{n}=H / 10 n$), find the ratio of the maximum energies of internal waves of the order 1 to 5.
(b) Find the ratio E_{0} / E_{n} for $n=1, \ldots .5$, assuming $a_{0}=100 \mathrm{~cm}$, $a_{n}=H / 20 \mathrm{n}, \mathrm{H}=10^{5} \mathrm{~cm}, \Gamma_{0}=\frac{\bar{\rho}_{\mathrm{H}}-\bar{\rho}_{0}}{\bar{\rho} H}, \bar{\rho}_{\mathrm{H}}, \bar{\rho}_{\mathrm{o}}=4: 10^{-3} \mathrm{~g} \mathrm{~cm}^{-3}$,

4.4 Tide Generating Forces

EXAMPLE 4.4.1 The Earth-Moon System
(a) Assume the masses of earth and moon to be concentrated at their center points. Compute the approximate location of the center of mass of the earth-moon system, e2rth's mass $=6 \cdot 10^{27} \mathrm{~g}$, moon's mass $=$
$7.3 \cdot 10^{25} \mathrm{~g}$, distance $=3.84 \cdot 10^{10} \mathrm{~cm}$.
(b) Explain graphically the notation "revolution without rotation" for the movement of the earth-moon system around their comon center of mass. (Use a meridional cross-section of the earth's sphere and show its location and orientation for several instants. Draw the tracks of two points fixed on the cross-section.)

EXAMPLE 4.4.2 TidaI Potential

The tical potential is represented by

$$
V=\gamma_{M}\left(\frac{1}{r}-\frac{1}{R}-\frac{r_{0}^{\prime} \cos \theta}{R^{2}}\right)
$$

where $Y=$ gravity constant
$\mathrm{M}=$ mass of celestial body
$\mathbf{r}=$ distance gravity center celestial body - observation location earth
$R=$ distance gravity center celestial body - gravity center
$r_{0}=$ distance gravity center earth - observation location earth
$\theta==$ zenith angle of the celestial body at the observation location
(a) Show by an expansion of r into powers of $\left(\frac{r_{0}}{\mathrm{~N}}\right)$, that the thirdorder term $V(3)$, which contains the third powers of $\left(\frac{R_{0}}{R}\right)$, is given
by

$$
\begin{equation*}
v^{(3)}=k \cdot(3 \cos \theta+5 \cos 3 \theta) \tag{1}
\end{equation*}
$$

where

$$
K=\frac{M}{\delta} \cdot \frac{r_{0}^{3}}{R^{4}}
$$

(b) Assuming a spherical earth with radius r_{1} and a mean distance Rearth-moon $=c$, derive $K=\frac{G^{6}}{6}$. sin Ψ using the tidal constant

$$
\begin{equation*}
G\left(r_{2}\right)=\frac{3}{4} \mathrm{M}^{\frac{r_{1}^{3}}{3}}{c^{3}}^{3^{0}} 26.2 \cdot 10^{3} \mathrm{~cm}^{2} \mathrm{sec}^{-2} \tag{2}
\end{equation*}
$$

and the parallax Ψ of the moon. (Parallax in this case is used from the definition of the "equatorial horizontal lunar parallax.")
(c) Using (I) and (2) and $\Psi=57^{\prime}$, compute the difference in height between zenith and nadir high tides of the lunar equilioriun tide.

EXAMPLE 4.4.3 Horizontal Component of Lunar Tidal Forces
(a) By means of a diagram of sufficient accuracy, sketch the distribution of the horizontal component of the lunar tide gorerating forces at the earth's surface. Assume the moon to be in the zenith at $25^{\circ} \mathrm{N}$ Jatitude.
(b) Using the diagram obtained in (a), plot (qualitatively) for latitudes $0^{\circ}, 25^{\circ} \mathrm{N}, 60^{\circ} \mathrm{N}$, and $90^{\circ} \mathrm{N}$ central vector diagrans of the horizontal components at $0,3,6,9$, and 12 hours lunar time:

EXMPLE 4.4.4 Magnitude of Tidal Forces (*3.3.3)

(a) Compare the magnitude of the horizontal component of the tide generating forces, F_{H},
(i) to the wind stress, which acts on the sea surface and is empirically described by

$$
\overrightarrow{\mathrm{T}}=3.2 \times 10^{-6} \mathrm{~W}^{2} \mathrm{dyn} \mathrm{~cm}^{-2}
$$

(W - windspeed at a height of 10 m , given in $\mathrm{cm} \mathrm{sec}{ }^{-1}$)
(ii) to the Coriolis force, which acts on a moving particle and is described by

$$
\mathrm{c}=2|\vec{\Omega}| \sin \varphi \cdot \mathrm{V}_{\mathrm{o}} \cdot \mathrm{~m} \quad \mathrm{~g} \mathrm{crasec}^{-2}
$$

where $m=$ mass
$V_{0}=$ current speed, for this example take the speed of the wind-driven current, which is given by

$$
v_{o}=\frac{\lambda \cdot W}{\sqrt{\sin \varphi}}, \lambda=1.26 \cdot 10^{-2}
$$

(iii) to the force due to a horizontal pressure gradient in the ocean, which causes a geostrophic current of the speed V_{o}. Use $W=10 \mathrm{~m} / \mathrm{sec}, \varphi=30^{\circ} \mathrm{N}$ and report all forces in dynes.
(b) Why is the vertical component of the tide generating forces negligible for oceanic tides? Is this also true for the tides of the atmosphere and the solid earth?

4.5 Analysis of Tidal Observations

EXAMPLE 4.5.1 Characteristic Features of Tidal Records
Figure 4.2 shows parts of tide gauge records from four different locations.
(a) State the type of the tides and name one characteristic location for each of the examples given.
(b) Mark the inequalities you can recognize in Figure 4.2 and give their reletion to moon phases as well as their delay.

Fig. 4.2: Tide gauge from four different geographic locations. From Dietrich and Kalle (1963).

```
Abbreviations: A = Apogee point of moon's orbit
    P = Perigee point of moon's orbit
    N = Maximum northern declination of the moon
    S = Maximum southern declination of the moon
    Q = Time when moon crosses the equator
```

EXAMPLE 4.5.2 Harmonic Analysis of Tidal Currents
TABLE 4,1 gives the results of hourly current observations from a North Sea lightvessel.
(a) Plot the observed values as a sequence of hourly current vectors (progressive vector diagram), state the main period observed and find the residual current components graphically. Assume the residual currents to be constant during both tidal cycles.
(b) Plot the observed values in separate u / t and $v / t-d i a g r a m s$.
(c) Compute amplitude and phase of both u- and v-components for 24.8 and 12.4 hour periods by harmonic analysis. Divide the interval of
24.8 hours $=2 \pi$ into $2 n=24$ equal $p_{2 r t s}$ of $\frac{2 \pi}{2 n}$ each. Read the velocity values u_{1} and v_{1} at $\Psi_{1}=Y_{1-1}+\frac{2 \pi}{2 n}$ for ${ }^{2 n}=1, \ldots .2 n$. Compute separately for u and v

$$
\begin{aligned}
& \left\{\begin{array}{l}
\operatorname{au}_{v} \\
\operatorname{av}_{v}
\end{array}\right\}=\frac{1}{n} \sum_{i=1}^{2 n}\left\{\begin{array}{l}
u_{1} \\
v_{i}
\end{array}\right\} \cos v \Psi_{i}, v=0,1,2 \\
& \left\{\begin{array}{l}
b u_{v} \\
b v_{v}
\end{array}\right\}=\frac{1}{n} \sum_{i=1}^{2 n}\left\{\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right\} \sin v \Psi_{i}
\end{aligned}
$$

and from these expressions amplitude $A_{v}=a_{v}^{2}+b_{v}^{2}$, and phase $\varphi_{y}=\tan ^{-1} \frac{b_{v}}{a_{v}}$. (The analyzed period is $\tau_{v}=\frac{1}{v} \cdot 24.8$ [h].)
(d) Compare the results of the harmonic analysis with the results obtained in (a) and (b).

TABLE 4.1

Hourly Current Observations from a lightvessel in the North Sea

Local time (h)	$\left(\mathrm{N}-\operatorname{comp}_{(\mathrm{sec}} \mathrm{sec}^{-1}\right)$	$\left(\mathrm{cm} \mathrm{comp} \mathrm{sec}^{-1}\right)$	Local time (h)	$\binom{\mathrm{N}-\operatorname{comp}_{\mathrm{P}}}{(\mathrm{~cm} \mathrm{sec}}$	$\left(\mathrm{cm} \sec ^{-1}\right)$
0	- 5.3	4.1	13	7.3	10.0
1	15.5	16.0	14	18.6	16.9
2	25.5	22.9	15	22.5	18.9
3	24.9	22.8	16	16.2	11.7
4	19.2	17.2	17	9.8	3.8
5	7.8	11.9	18	- 0.4	6.3
6	- 9.1	5.5	19	-17.9	- 0.6
7	-26.2	-6.2	20	-15.9	- 5.5
8	-39.6	-17.8	21	-37.3	-10.1
9	-35.1	-21.3	22	-30.6	-11.0
10	-30.6	- 4.9	23	-23.8	-4.7
11	-21.6	- 3.1	24	-8.7	- 3.5
12	- 6.4	$+3.1$	25	$+3.2$	+ 2.8

EXAMPLE 4.5.3 Gurrent Ellipses (*3.2.3)
TABLE 4.1 gives the results of hourly current observations from a North Sea lightvessel.
(a) State the mean period observed and find the iesidual current components numerically. Assume the residual currents to be constant during each of the observed dominant cycles.
(b) Eliminate the residual currents from the observations given in TABLE 4.1, and plot the resulting hourly vectors origineting all from the same point (central vector diagram).
(c) Assume that the results of a Fourier analysis of current observations revealed

$$
\begin{aligned}
& u=u_{o} \cos \left(\omega t+\varphi_{1}\right) \\
& v=v_{o} \cos \left(\omega t+\varphi_{2}\right), \omega=\frac{2 \pi T}{T}, \tau=\text { period }
\end{aligned}
$$

Determine analytically the length and orientation of the major semiaxis and the minor semi-axis of the current ellipse (find the normalized equation of the ellipse by rotating the coordinate system).
(d) Using the results of (c) and the harmonic constants derived for the semidiurnal tidal component in Example 4.5.2, draw the computed tidal ellipse and compare it with the graph obtained in (b).

EXAMPIE 4.5.4 Harmonic Synthesis
For the port of Nereus on the African coast, the harmonic constants of the principal tidal components are given in TABLE 4.2. The tidal height 5 may be computed from

$$
\begin{aligned}
\xi & =M_{2} \cos \left(\frac{2 \pi}{T_{M_{2}}} t+v_{o_{M_{2}}}+{K_{M_{2}}}\right) \\
& +S_{2} \cos \left(\frac{2 \pi}{T_{S_{2}}} t+v_{o_{S_{2}}}+K_{S_{2}}\right) \\
& +K_{1} \cos \left(\frac{2 \pi}{T_{K_{1}}} t+v_{o_{K_{1}}}+K_{K_{1}}\right)
\end{aligned}
$$

(a) What was the height of the tide at 14.30 hours January 3, 1969 ?
(b) Was the tide rising or falling at 14.30 January 3, 1969 ?
(c) What was the tine of high tide and low tide for January 3, 1969?
(d) Plot hourly tidal components for 0 to 24 hours, January 3, 1969, add them graphically and use the result for checking (a) - (c).
Are the tides mainly diurnal, semidiurnal, or mixed?

TABLE 4.2
Harmonic Constants for Port of Nereus

Tidal Constituent	$\begin{gathered} \text { Phase } \\ \mathrm{K} \end{gathered}$	fn	Amplitude $\therefore \quad \mathrm{cm}$	$\begin{gathered} \text { Period } \\ \text { nurs } \end{gathered}$	$\begin{aligned} & V_{\mathrm{o}} \text { at } 0000 \mathrm{hrs} \\ & \text { Jan. } 1,1969 \\ & \hline \end{aligned}$
M_{2}	$+60^{\circ}$	\cos	72	12.42	273°
S_{2}	$+72^{\circ}$	\cos	50	12.00	20°
K_{1}	$+250^{\circ}$	\cos	48	23.93	92°

EXAMPLE 4.5.5 Barotropic and Baroclinic Tides
The results of a harmonic analysis for the M_{2}-period of curr-a: in. servations at $30^{\circ} \mathrm{N}, 28^{\circ} \mathrm{W}$ are given in TABLE 4.3 .
(a) Do the observations allow for an interpretation in tirn: :: barotropic tide only? Give the reasons.
(b) The observations given in TABLE 4.3 were interpreted 1 n $t \cdot:$: of barotropic and baroclinic tidal waves (O-order internd ; ! . equivalent to barotropic mode). According to the concopt wit:t: nal wave motion, to be eigen oscillations of a vertically :iti:: : : : ocean, the vertical distribution of the v-amplitude due to for: : : : : internal waves at the observation site can approximately h. f:l:, ! .

$$
v(z)=v_{o}+\sum_{n=1}^{m} v_{n} \cos \frac{n \pi(H-z)}{H}
$$

the indices o and n indicating the order of the barotrople ant baroclinic modes; $H=294 \mathrm{~m}$.

Using the results of an approximation of the observed curriont: zero and first-order M_{2}-internal modes given in TABLE 4.3 for the depth $z=19 \mathrm{~m}$, plot the vertical distribution of the computal zero and first-order v-amplitudes and compare their sum to the observed v-amplitudes. Complete TABLE 4.3.

TABLE 4.3

Harmonic Analysis for the M_{2}-period

z (in)	M_{2} - Tidal Current Observations$\left.\begin{array}{c\|c\|cc} \text { Ampl. } \\ (\mathrm{cm} \mathrm{sec} \end{array}\right) \begin{gathered} \text { Phase } \\ (\text { degr. }) \\ u \end{gathered}$				Approximations for v-comprivil					
19	20.4	316	19.8	257	16.0	267	6.1	220	?	
151	17.1	339	17.2	261	?	?	?	?	?	,
283	10.4	358	12.6	292	$?$?		?	?	

4.6 Tides in the Ocear

EXAMPLE 4.6.1 Equilibrium Tide
(a) State the main objection to the equilibrimatide thinf;
(b) What change of one of the earth's parameters wotid rair." (!." objection meaningless? Take the world ocean's depth to l.. 1.

EXAMPLE 4.6.2 Tidal Waves in the Ocean Basins
(a) Why does the head of a tidal current vector in the ocean generally follow an ellipse? Is this also true for the currents observed during the passage of a tsunami wave?
(b) State the assumptions which lead to the generation of an amphidromic point in a quadratic basin. Several amphidromic points are known to exist in the real ocean basins, although the assumptions for their generation seem to be rather restrictive. Give an explanation.
(c) How would you determine the location of an amphidromic point if you have the facilities to measure (i) currents or (ii) surface elevation at three different locations? Propose convenient arrays and give the reasons.

EXAMPLE 4.6.3 Tides in Adjacent Seas
For the tides of adjacent seas or bays, three different types of oscillations must be considered: (i) eigen-oscillations, (ii) cooscillating tides, (iii) independent astronomic tides.
(a) What causes the three different types of oscillations, and what factors are decisive for their perlods and amplitudes?
(b) What are the differences between (ii) and (iii) at the entrance of the adjacent sea or bay?
(c) Give one example each of where (i) is of large influence and where (ii) is of small influence on the tides of the corresponding areas.

EXAMPLE 4.6.4 Topographic Influences on Tides
(a) Idealize the English Channel to be a channel of a width of 100 km and of a uniform depth of 80 m . Assume a semidiurnal tidal wave is propagating through the channel. in northernly direction. What is the difference in tidal amplitude between the "English" and the "French" coast?
(b) What important factors determine additionally the actual distribution of tidal amplitudes in the English Channel area?
(c) Although the horizontal components of the tide generating forces are of the order of $10^{-7} \mathrm{x} \mathrm{g}$, the tidal current velocities over shelf areas are of the order of 1 kn . Give an explanation.

PART B - ANSHERS AND REFERENCES

CHAPTER 1

EXAMPLE 1.1.I

Fofonoff, N. P. (1962): The Sea, Vol. 1, "Physical Propercies of Sea Water," Interscience Publ., pp. 4-6.

EXANPEE 1.1 .2

(a) Fofonoff, N. P. (1962): Loc. cit. Example 1.1.1, pp. 8-10.
(b) $T=4.70^{\circ} \mathrm{C}, \mathrm{S}=34.74 \%$; $\sigma_{\mathrm{t}}=27.52$. Density is not a Inear function of salinity and tempersture.
(c) 76 cm

EXAMPLEE 1.1.3

(a) Fofonoff, N. P. (1962): Łoc. cit. Example 1.1.1, pp. 12-17.
(b) Depth (m) $\quad \mathrm{T}^{\circ} \mathrm{C} \quad \theta^{\circ} \mathrm{C}$

2,000	2.25	2.10
3,000	1.64	1.41
4,000	1.60	1.27
5,000	1.72	1.26
6,000	1.36	1.25
7,000	2.01	1.25
8,000	2.15	1.23
9,000	2.31	1.19
10,000	2.48	1.17

Apparent instability if T is used.
(c) Flow into Cayman Trench over an approximate sill depth of $1,600 \mathrm{~m}$.

EXAMPLE 1.1.4
(a) Fofonoff, N. P. (1962): Loc. cit. Example 1.1.1, Pp. 17-22.
(b) $\mathrm{T}=-1.3^{\circ} \mathrm{C}, \mathrm{S}=24.7 \%$

Dietrich, G. and K. Kalle (1963): General Oceanography, Incerscience Publ., pp. 55-57.

EXAMPLE 1.2.1

(b) Dictrich, G. and k. Kalle (1903): Loce fit. Eximplei.i.f,
pe. 38-73.
(c) $960 \mathrm{~cm}^{3}$
(d) $1483 \mathrm{~m} / \mathrm{sec} ; 1454 \mathrm{~m} / \mathrm{sec}$.

EXAMPLE 1.2 .2
(a), (b) Neumann, G. and W. J. Pterson, Jr. (1966): Principles of Physical oceanography, Prentice-Hall, pp. 48-51.

EXAMPLE 1.2.3
(a) Pressure, $g_{1}=0.018 \mathrm{sec}^{-1}$
(b) Neumann, G. and W. J. Pierson, Jr. (1966): Loc. cit. Example 1.2.2, pp. 48-51.
(c) 86.7 km

EXAMPLE 1.2 .4
(a), (b)

Time in seconds

EXAMPLE 1.2 .5

[^0]
(ii) $t=$ CONSTANT ; $S_{1}=20 \% \% ; S_{2}=35 \%$ (TOTAL REFLECTION POSSIBLE SINCE $\beta \geqq 90^{\circ}$)

Fig. 1.1: Answer to Example 1.2.5.

EXAMPLE 1.3.1
(a)

Attemation $=$ Absorption	+ Scattering	
pure water	molecular	molecular
seawater	molecular dissolved solution suspended matter	molecular dissolved solution suspended matter

Equation describes only absorption for a specified wavelength over a small depth range.
(b) Sverdrup, H. U., M. W. Johnson, and R. H. Fleming (1942): The Oceans, Prentice-Hall, pp. 82-88.

EXAMPLE 1.3.2

(a), (b) Neumann, G. and W. J. Pierson, Jr. (1966): Loc. cit. Example 1.2.2, pp. 67-69.
(c) Predominantly foreward scattering (downward) occurs.
(d) Oceanic water would match color of coastal water shifting towards green-yellow.

EXAMPLE 1.3 .3

(a) Planck's radiation law; assumption of black body radiation.
(b) 10 m, , airborne sensing possible; space borne sensing may be influenced by O_{3}-absorption.
(c) von Arx, W. S. (1962): An Introduction to Physical Oceanografiy, Addison-Wesley Publ., Pp. 144-146.
(d) Order of magnitude of effected layer is 1 mon.

EXAMPLE 1.3 .4
(a) Dietrich, G. and K. Kalle (1963): Loc. cit. Example 1.1.4, pp. 38-42.
(b) Gaul, R. D., Editor, (1963): Marine Science Instrumentation Vol. 2, Instr. Soc. America, pp. 10, 19-24.

EXAHPLE 1.3.5
(a), (b) von Arx, W. S. (1962): Loc. cit. Example 1.3.3, pp. 260-279.

EXAMPLE 1.4.1
(a) Proudman, J. (1953): Dynamical Oceanograply, Methuen, pp. 101.-10..
(b) Sce Eis. 1.2 .

EXAMPLE 1.4 .2
(a), (b) Hinze, J. O. (1959): Turbulence, McGraw-Hill, pp. 13-22. Defant, A. (1961): Physical Oceanography I, Pergamon Press, pp. 100-109. EXAMPLE 1.4.3
(a), (b), (c) Proudman, J. (1953): Loc. cit. Example 1.4.1, pp. 111-119.

EXAMPLE 1.4.4
(a), (b) Defant, A. (1961): Loc. cit. Example 1.4.2, pp. 393-398.

EXAMPLE 1.5.1

(a), (b) Dietrich, G. and K. Kalle (1963): Loc. cit. Example 1.1.4, pp. 38-57.
(c) North Sea no; Baltic Sea yes.

EXAMPLE 1.5.2
(a), (b) Neuman, G. and W. J. Pierson, Jr. (1966): Loc. cit. Example 1.2.2, Fp. 82-84.

EXAMPLE 1.5.3
(a), (b), (c) Neuman, G. and W. J. Pierson, Jr. (1966): Loc: cit. Example 1.2.2, pp. 85-87.

Fier, 1.2: Ausuer to Example 1.4.1(b).

CHAPTER 2

EXAMPLE 2.1.1

Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 152-154.
EXAMPLE 2.1.2
von Arx, W. S.: Loc. cit. Example 1.3.3, pp. 141-142.
EXAMPLE 2.1.3
(a) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 151-158.
(b), (c) von Atx, W. S.: Loc. cit. Example 1.3.3, pp. 144-146.

EXAMPLE 2.1 .4
(a), (b) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Loc. cit. Example 1.3.1, pp. 104-110.

EXAMPLE 2.1.5
(a) Anmual heat storage in ocean $=7.2 \cdot 10^{22}$ cal

Annual heat storage in land $=8.4 \cdot 10^{21}$ cal Daily incoming radiation $=1.5 \cdot 10^{21} \mathrm{cal} / \mathrm{day}$ Different capacities essential due to difference in specific heat, occurrence of turbulent exchange processes in water.
(b) $57.2^{\circ} \mathrm{C}$ and $6.6^{\circ} \mathrm{C}$
(c), (d) Defant, A.: Loc. cit. Example 1.4.2, pp. 110-117. Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Joc. cit. Example 1.3.1, pp. 124-128.

EXAMPLE 2.1.6
(a) - (c) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 159-169.

EXAMPLE 2.2 .1
(a) Ocean: $1.7 \cdot 10^{18}$ cal; atmosphere: $1.2 \cdot 10^{20}$ cal
(b) Ocean: $1.1 \cdot 10^{21}$ cal/day; atmosphere: $3.6 \cdot 10^{21} \mathrm{cal} / \mathrm{day}$
(c) Latent heat in atmospherc: $9 \cdot 10^{21}$ cal
(d) Advective heat transport in oceanic currents (e.g., western boundary currents).

EXAMPIEE 2.2.2
The heat transport per second has been related to $0^{\circ} \mathrm{C}$. The reference temperature is arbitrary, since the net heat transport is an absolute value.

Surface Water:

$$
150 \times 10^{12} \mathrm{cal} / \mathrm{sec}
$$

Central Water:
$10 \times 10^{1.2} \mathrm{cal} / \mathrm{sec}$
Deep Water: $-27 \times 10^{12} \mathrm{cal} / \mathrm{sec}$

Bottom Water:
Net heat transport northward
$\frac{2 \times 10^{12} \mathrm{cal} / \mathrm{sec}}{135 \times 10^{12} \mathrm{cal} / \mathrm{sec}}$

$$
=5.7 \times 10^{11} \mathrm{kw}
$$

EXAMPLE 2.2.3

(b) Kinetic energy per unit mass: 2.7×10^{-4} cal Excess heat content per unit mass: 4 cal

EXAMPLE 2.2.4
(a) 1 day : Depth $=0.2 \mathrm{~m}$ for molecular thermal diffusivity Depth $=28.7 \mathrm{~m}$ for eddy thermal diffusivity

1 year: Depth $=3.6 \mathrm{~m}$ for molecular thermal diffusivity Depth $=544.0 \mathrm{~m}$ for eddy thermal diffusivity
(b) Lag of $180^{\circ}: 28.7 \mathrm{~m}$ for 1 day; 544.0 m for 1 year Lag of 360° : 75.4 m for 1 day; 1088.0 m for 1 year
(c) 1 day : phase velocity $=6.6 \times 10^{-2} \mathrm{~cm} / \mathrm{sec}$

1 year: phase velocity $=3.5 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$
EXAMPLE 2.2 .5
(a) $\left.\frac{\mathrm{dp}}{\mathrm{dz}}\right|_{\text {crit. }}=\frac{\overrightarrow{\mathrm{e}} \mathrm{u}_{\mathrm{o}}^{2}}{50 \cdot \mathrm{gH}^{2}}\left(\frac{\mathrm{H}-z}{\mathrm{H}}\right)^{-8 / 5}$; critical depth $=25 \mathrm{~m}$
(b) $235 \mathrm{~cm} / \mathrm{sec}$
(c) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 471-474.

EXAMPIE 2.3.1
(a) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Loc. cit. Example 1.3.I, PP* 124-126.
(b) Three main reasons: (i) Atlantic is main freshwater source for rivers and lakes in adjacent continents; (ii) deficit of zonal water
vapor transport in the southern west wind drift dut ro fr: : f.. . . . along the Andes; (iii) presence of the arid Europuan Meditutan: :n.

EXAMPLE 2.3.2

Sverdrup, H. U., M. W. Johnson, R. H. Fleming: loc.eit. . . : 1.3.1, pp. 124-126.

EXAMPIE 2.3 .3
(a), (b) Defant, A.: Loc. cit. Example 1.4.2, pp. 154-156.
(c) Meteor: 48m; Altair: 47m
(d) Meteor: 916m; Altair: 900m. In presence of a thermocilne A: will be drastically decreased.

EXAMPLE 2.3 .4
(a) 40.6 cm
(b) $2.78 \cdot 10^{8} \mathrm{kwh}$
(c) 96 years

EXAMPLE 2.4.1
(a) With $\mathrm{E}-\mathrm{P}=50 \mathrm{~cm} /$ year, $\mathrm{S}(\mathrm{z}=10 \mathrm{~m})=35.055 \%$
(b) With $E-P=-50 \mathrm{~cm} /$ year, $S(z=10 \mathrm{~m})=34.945 \%$

EXAMPLE 2.4 .2
(a) See Fig. 2.1. Also, Schott, F. (1966): Der Oberflichensalzinhalt in der Nordsce, Deut. Hydr. Zeitschr., A(8), Nr. 9.

EXAMPIE 2.5.1
(a), (b) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Loc. cit. Example 1.3.1, Pp. 153-163.

EXAMPLE 2.5.2
(a) See Fig. 2.2.
(b) See Fig. 2.3.
(c) Districh, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 198-20.
(d) See Fig. 2.4.
vapor transport in the southern west wind drift duc to proti:u: : . along the Andes; (iii) presence of the arid European Moditerta:a : : EXAMPLE 2.3.2

Sverdrup, H. U., M. W. Johnson, R. H. Fleming: loc. cit. ! : : 1.3.1, pp. 124-126.

EXAMPLE 2.3.3
(a), (b) Defant, A.: Loc. cit. Example 1.4.2, pp. 154-156.
(c) Meteor: 48m; Altair: 47m
(d) Meteor: 916 m ; Altair: 900 m . In presence of a thermocline A. will
be drastically decreased. be drastically decreased.

EXAMPLE 2.3 .4
(a) 40.6 cm
(b) $2.78 \cdot 10^{8} \mathrm{kwh}$
(c) 96 years

EXAMPLE 2.4.1
(a) With $E-P=50 \mathrm{~cm} /$ year, $S(z=10 \mathrm{~m})=35.055 \%$
(b) With $E-P=-50 \mathrm{~cm} /$ year, $S(z=10 \mathrm{~m})=34.945 \%$

EXAMPLE 2.4 .2
(a) See Fig. 2.1. Also, Schott, F. (1966): Der OberflHchensalzratholt
in der Nordsee, Deut. Hydr. Zeitschr., A(8), Nr. 9.

EXAMPLE 2.5.1
(a), (b) Sverdrup, H. U., M. W. Johnson, R. H. Fleming: Ioc. cit. Example 1.3.1, pp. 153-163.

EXAMPLE 2.5 .2
(a) See Fig. 2. 2.
(b) See Fig. 2.3.
(c) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 198-202.
(d) Sec Fig. 2.4.

Fig. 2.1: Answer to Example 2.4.2. (After Schott, 1966.)

Fig. 2.2: Answer to Example 2.5.2 (i).

Fig. 2.3: Answer to Examie 2.i..'3.

Fig. 2.4: Answer to Example 2.5.2(d).

EXAMPEE 2.5.3
(a), (b) See analogue example in Defant, A.: Loc. cit. Example 1.4.2, pp. 214-216.

EXAMPLE 2.5.4
(a), (b), (c) Broecker, W. (1963): The Sea, Vol. II, "Radiotaotopon and Large-scale Oceanic Mixing," Interscience Publ., pp. 88-9\%. Also for (c) Neuman, G. and W. J. Pierson, Jr.: Loc. cit, Fixample 1.2.2, pp. 465-478.

EXAMPLE 2.5.5
(a) See Fig. 2.5 to 2.7.
(b) April; Mid-May; Winter water from 1957.
(c) Evaporation is greater in fall and winter when surface winds are stronger. During summer wind speeds are 10 and prectipltation exceeds evaporation and during fall there is excess evaporation.
(d) During sumer T

During winter S. more important effect
For vertical convection see Fig. 2.7.
(e) (i) Combined effects of winter cooling and evaporation; (ix) winter cooling; (iii) wind mixing (winter cooling lowers surface density below $4^{\circ} \mathrm{C}$ because $\mathrm{S}<24.7 \%$.
(f) See Fig. $2.8 \mathrm{a}, \mathrm{b}$.
(g) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 172-176.

EXAMPLEE 2.6.1
(a) - (c) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 349-352.

EXAMPLE 2.6 .2
(i) and (ii) See Figs. 2.9 a, b.

EXAMPLE 2.6.3
(a) $w \frac{\partial T}{\partial z}=\Lambda_{z} \cdot \frac{\partial^{2} T}{\partial z^{2}}$
(b)

$2(\mathrm{~m})$		50	75	100	125	150	175	200	225	250
$\mathrm{w} \cdot 10^{5}$	$\left(\mathrm{~cm} \mathrm{sec}^{-1}\right)$	-	-53	-13	-13	-9	-11	-40	0	-

Fig. 2.5: Answer to Example 2.5.5(a).

Fig. 2.6: Arswer to Example 2.5.5(a)

Fig. 2.7: Answer to Example 2.5.5(a)

(c) Neuman, G. and W. J. Pierson, Jr.: Loc. cit. Example 1.2.2 pp. 445-446.

EXAMPLE 2.6 .4
(a), (i) Runoff from Norway and Greenland generates lighter water in coastal areas and, hence, an offshore directed pressure gradient.
(ii) Runoff from islands (e.g., Iceland) has same effect.
(b) An additional component of the Norwegian-Greenland Sea circulation is due to the inflow of the Northeast Atlantic Current along Norway and a compensating outflow along Greenland.

Fig. 2.9a: Answer to
Example 2.6.2, arid climate.

The Atlantic Ocean, Straits of Gibraltar, Mediterranean Sea.

The Indian Ocean, Strait of Bab-el-Mandeb, Red Sea.

The Indian Ocean, Strait of Hormuz, Persian Gulf.

Fig. 2.9b: Answer to
Example 2.6.2, humid climate. The North Sea, Kattegat, Baltic Sea.

The Mediterra* nean Sea, Bosporus, Plack Sea.

Atlantic Ocean, most of Rorwegian fourds.

PRECIPITATION

and RINOFF

CHAPTER 3

EXAMPLE 3.1.1
(a), (b) von Arx, W. S.: Loc. cit. Example 1.3.3, pp. 36-38.

EXAMPLE 3.1 .2
(a) 978.28 dyn $m, 983.23$ dyn $m, 984.23$ dyn m. Depth in dyn m expresses energy.
(b)

	$\varphi=0^{\circ}$	$\omega=60^{\circ}$
$1,000 \mathrm{~m}$	$\mathrm{D}=0.978 \mathrm{~h}$	$\mathrm{D}=0.983 \mathrm{~h}$
$10,000 \mathrm{~m}$	$\mathrm{D}=0.980 \mathrm{~h}$	$\mathrm{D}=0.985 \mathrm{~h}$

Latitude effect is more important.
(c) 1,012 dbar, $10,500 \mathrm{dbar}$

EXAMPLE 3.1 .3
(a), (b) Defant, A.: Loc. cit. Example 1.4.2, pp. 304-308.
(c) von Arx, W. S.: Loc. cit. Example 1.3.3, pp. 130-133

EXAMPLE 3.1 .4
(a), (b) Kxauss, W. (1966): Interne Wellen, Borntraeger-Verlag, PP. 16-17.

Phillips, O. M. (1966): The Dynamics of the Upper Ocean, Cambridge University Press, pp. 14-19 and pp. 161-165.
(c) Depth (m)

$$
\mathrm{N}_{2}=\sqrt{\mathrm{gE}}\left(\sec ^{-1}\right)
$$

0
50

0

100
150
200
400
600
800
1,000
1,200
1,500
2,000 2,500

0
120×10^{-4}
94×10^{-4}
48×10^{-4}
9.8×10^{-4}
9.8×10^{-4}
9.8×10^{-4}
8.3×10^{-4}
6.7×10^{-4}
5.6×10^{-4}
3.4×10^{-4}
(d) Larger compressibility of float \rightarrow overshooting Snaller compressibility of float \rightarrow undershooting Equal compressibility of float \rightarrow perfect following
(a), (b) Defant, A.: Loc. cit. Example 1.4.2, pp. 343-344.

EXAMPLE 3.2 .2
(a) $150 \mathrm{~cm} / \mathrm{sec}$ towards 90°
(b) Equatorial undercurrent.

EXAMPLE 3.2.3
(a) See Fig. 3.1.
(b) (i) Tidal; (ii) 0.5 kn towards 48°; (iii) Ekman drift
(c) See Fig. 3.2.

EXAMPLE 3.2.4
Neumann, G. and W. J. Pierson, Jr.: Loc. cit. Example 1.2.2, pp. 119-120.

EXAMPLE 3.2.5

(a) Top left Top right $2.68 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ down Bottom right $3.57 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ down Bottom left $1.43 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ down
$7.68 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ up
(b) Errors: (i) Ignored world outside the four areas.
(ii) Density may vary.
(iii) Ignored cyclonic motion on the left, and its dynamic effects.

EXAMPLE 3.2 .6

$$
\begin{aligned}
& u_{2}^{3}-u_{2}\left(2 \mathrm{gH}_{1}+u_{1}^{2}\right)+\frac{2 \mathrm{gu}_{1} W_{1} \mathrm{H}_{1}}{\mathrm{~W}_{2}}=0 \\
& u_{2}=4.3 \mathrm{n} / \mathrm{sec} ; \mathrm{H}_{2}=9.3 \mathrm{~m}
\end{aligned}
$$

EXAMPLE 3.2 .7

$$
\mathrm{V} \cong 4 \mathrm{~cm} / \mathrm{sec}
$$

EXAMPLE 3.3.1
(a), (b) Dietrich, G. and K. Kalle: Loc. cit. Bxample 1.l.4, pp. 313314.

Fig. 3.1: Answer to Example 3.2.3(a).

Fig. 3.2: Answer to Example 3.3.3(c).
(a), (b)

	$z=$ const	$D=$ const
$\hbar=0$ poleward acceleration $\vdots \neq 0$ cycloidal path in zonal direction	unaccelerated	
unaccelerated		

EXAMPLE 3.3.3
(a) 12^{\prime} towards the south Momentarily 12^{\prime} deflection toward the west.
(b) No deflection from the vertical.
(c) Particle oscillates around the equator.

EXAMPLE 3.3.4
Initial speed $1.56 \mathrm{~cm} \mathrm{sec}{ }^{-1}$
EXAMPLE 3.3 .5
(a) $\mathrm{M}_{2}: 75^{\circ} \mathrm{N}$ and $\mathrm{S} ; \mathrm{O}_{1}: 28^{\circ} \mathrm{N}$ and S
(b) 12 hours at the North pole
(c) See Fig. 3.3.

EXAMPLE 3.4.1
(a) - (c) Neumann, G. and W. J. Pierson, Jr.: Loc. cit. Example 1.2.2, pp. 114-186.

EXAMPLE 3.4.2
$x=\frac{Z p}{f}\left(t-\frac{1}{f} \sin f t\right) ; y=\frac{\nabla p}{f^{2}}(1-\cos f t)$, representing cycloidal motion in zonal direction.

EXAMPLE 3.4 .3
See Fig. 3.4.
EXAMPLE 3.4.4
(a), (b) Stommel, H. (1965): The Gulf Stream, 2d ed., University of California Fress, pp. 108-111.
(c) von Arx, W. S.: Loc. cit. Example 1.3.3, pp. 107-111.

 table.
(ii) Car moves towards the north.

EXAMPLE 3.5.1

(a) Sverdrup, H. U., M. W. Johnson, and R. H. Fleming: i.n. . : Example 1.3.1, Pp. 460-465.
(b) $29 \mathrm{cn} / \mathrm{sec} ; 2 \cdot 10^{-6} \mathrm{~cm} / \mathrm{km}$

EXAMPLE 3.5.2

See Fig. 3.5. and Dietrich, G. and K. Kalle: Loc. cit.
Example 1.1.4, pp. 328-33.
EXAMPLE 3.5.3
Between A and B: $67 \mathrm{~cm} / \mathrm{sec}$ towards north Between B and C: $54 \mathrm{ca} / \mathrm{sec}$ towards south

EXAMPLE 3.5 .4
(a) - (d) Neumann, G. and W. J. Pierson, Jr.: Loc. cit. Pxam!. 1.2.2, pp. 191-205 and pp. 450-453.

EXAMPLE 3.5 .5
Stommel, H.: Loc. cit. Example 3.4.4, pp. 154-156.
EXAMPLE 3.5 .6
Stomel, H.: Loc. cit. Example 3.4.4, pp. 81-103 and ser Fir.' ! EXAMPLE 3.5 .7

Stommel, H.: Loc. cit. Example 3.4.4, Pp. 93-103.
$A_{x}=10^{6} \mathrm{~cm}^{2} / \mathrm{sec}$: Narrow, slow boundary current
$A_{X}^{X}=10^{9} \mathrm{~cm}^{2} / \mathrm{sec}$: Broad, fast boundary current
EXAMPLE 3.5 .8
(a) - (c) Haltiner, G. 3. and F. L. Martin (3.957): Dyamicil a: : Physical Meteorology, McGraw-Hill, PP. 356-357.

Fig. 3.5: Answer to Example 3.5.2.

CHAPTER 4

EXAMPLE 4.1.1

Sears, F. W. (1958): Mechanics, Wave Motion and Heat, Addison-Wesley, Chapters 16, 17.

EXAMPLE 4.1 .2

(a) Kinsman, B. (1965): Windwaves, Prentice Hall, pp. 126-128.
(b) Equation for orbital path of progressive waves obtained by integration with respect to t :
$\left[\frac{\left(x-x_{0}\right)^{2}}{\left[\frac{\mu}{\omega} \cdot \cosh x\left(z_{0}-H\right)\right]^{2}}+\frac{\left(z-z_{0}\right)^{2}}{\left[\frac{x^{a}}{\omega^{a}} \sinh x\left(z_{0}-H\right)\right]^{2}}=1\right.$,
for short waves $\left\{\begin{array}{l}\cosh \mu\left(z_{0}-H\right) \approx \frac{e^{-\mu z} \cdot e^{x H}}{2} \\ \sinh x\left(z_{0}-H\right) \approx-\frac{e^{-\mu z} \cdot e^{\mu H}}{2}\end{array}\right.$
for long waves $\left\{\begin{array}{l}\cosh x\left(z_{0}-H\right) \approx x H \\ \sinh x\left(z_{0}-H\right) \approx 1\end{array}\right.$
The equation of the orbital path simplifies for
short waves to: $\frac{\left(x-x_{0}\right)^{2}}{\left(\frac{n}{\omega} a * e^{-\mu z_{0}}\right)^{2}}+\frac{\left(z-z_{0}\right)^{2}}{\left(\frac{\mu}{\omega} a^{*} e^{-\mu z_{0}}\right)^{2}}=1$
where $a^{*}=a e^{x H}$
long waves to: $\quad \frac{\left(x-x_{0}\right)^{2}}{\left(\frac{\mu}{\omega} a\right)^{2}}+\frac{\left(z-z_{0}\right)^{2}}{\left(\frac{\mu^{2}}{\omega} a\left(z_{0}-H\right)\right)^{2}}=1$
(c) Equation of orbital path for standing waves obtained by integration with respect to t :

$$
\frac{z-z_{0}}{x-x_{0}}=-\tanh x\left(z_{0}-H\right) \cot \mu x_{0}
$$

simplification for
short waves: $\frac{z-z_{0}}{x-x_{2}}=\cot \mu x_{0}$
long waves: $\frac{z-z_{0}}{x-x_{0}}=-\mu\left(z_{0}-H\right) \cot x x_{0}$
(d) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, Fp. 333, 362 , 394.

Kinsman, B.: Loc. cit. Example 4.1.2, PP. 138-140.

EXAMPLE 4.1 .3

(a) - (d) Krauss, W.: Loc. cit. Example 3.1.4, pp. 15-16 and pp. 2629. (See also English summaries p. 216.)

EXAMPLE 4.1 .4
$\operatorname{Re}\left\{\{p\}=-\omega \cdot a \cdot \rho_{e} \cosh \mu(z-H) \cdot \sin (\mu x-\omega t)+g p_{e} z\right.$, amplitudes of long and short waves are frequency-dependent.

EXAMPLE 4.2 .1
(a) 156 m
(b) $15.6 \mathrm{~m} / \mathrm{sec}$
(c) $\lambda_{\mathrm{g}}=\sqrt{\lambda_{\mathrm{e}} / 2 \pi \cdot \mathrm{H}} \cdot \lambda_{1}$
(d) Kinsman, B,: Loc. cit. Example 4.1.2, pp. 128-132.
(e) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 382384.

EXAMPLE 4.2 .2
(a) 139 hours before first observation.
(b) $11,700 \mathrm{~km}$

EXAMPLE 4.2.3
(a), (b) Dietrich, G. and K. Kalle: Loc. cit. Example 1.I.4, pp. 380384.

EXAMPLE 4.2 .4
(a) $\tau=\frac{2 \ell}{\sqrt{\mathrm{gH}}}$
(b) Dietrich, G. and K. Kalle: Loc. cit. Example 1.1.4, pp. 398-405.

EXAMPLE 4.3.1
(a), (b) Krauss, W.: Loc. cit. Example 3.1.4, pp. 43-45.

EXAMPLE 4.3.2
(a), (b) Phillips, 0. M.: Loc. cit. Example 3.1.4, pp. 161-165.

EXAMPLE 4.3.3

(a) Krauss, W.: Loc. cit. Example 3.1.4, pp. 145-146.
(b) Since internal wave processes are controlled by a dispersion relation the choice of $\psi(0)$ requires a corresponding choice of the spatial scale.
(c) $\frac{\partial \Psi}{\partial z}=f(z)$, especially step-like fine structure of the stratification.

EXAMPLE 4.3.4
(a), (b) Krausi, W.: Loc. cit. Example 3.1.4, pp. 46~49.

EXAMPLE 4.4.1
(a) $4,600 \mathrm{~km}$ from the earth's center.
(b) Defant, A. (1960): Physical Oceanography IT, Pergamon Press, pp. 254-258.

EXAMPLE 4.4.2
(a)-(c) Neumann, G., W. J. Pierson, Jr.: Loc. cit. Example.1.2.2, PP. 302-304. Dietrich; G., and K. Kalle: Loc. cit. Example 1.1.4, pp. 423-425. Barte1s, J. (1957): Handbuch der Physik, Vol. 48, "Gezeitenkryfte," Springer-Verlag, pp. 734-746.

EXAMPLE 4.4.3
(a), (b) Defant, A. (1958): Ebb and Flow, University of Michigan Press, pp. 26-33.

EXAMPLE 4.4.4
(a) $\mathrm{F}_{\mathrm{H}}=0\left(10^{-4}\right.$ dynes); $\overrightarrow{\mathrm{T}}=3.2$ dynes $/ \mathrm{cm}^{2} ; c=1.3 \cdot 10^{-3}$ dynes; pressure gradient: $1.3 \cdot 10^{-3}$ dynes.
(b) Ratio of gravity, g, to tidal induced changes, $\Delta \mathrm{g}$, approximately 9. 10 $0^{6}: 1$. For tides of the atmosphere and the solid earth, see Defant, A., loc. cit. Example 4.4.3, pp. 106-117.
(a), (b) Defant, A.: Loc. cit., Vol. II, Example 4.4.1, pp. 305-308.

EXAMPLE 4.5.2
(a) - (d) See Figures 4.1 and 4.2.

EXAMPLE 4.5.3
(a) $0-12 \mathrm{~h}: \mathrm{u}=3.9, \mathrm{v}=-6.2 ; 13-25 \mathrm{~h}: \mathrm{u}=2.6, \mathrm{v}=-5.0$.
(b) See Fig. 4.3.
(c) Major and minor axes, direction δ

$$
(1 / \sqrt{2})\left\{u_{1}^{2}+u_{2}^{2}+v_{1}^{2}+v_{2}^{2} \pm\left[\left(u_{1}^{2}+u_{2}^{2}+v_{1}^{2}+v_{2}^{2}\right)^{2}-4\left(u_{1} v_{2}-u_{2} v_{1}\right)^{2}\right]^{\frac{1}{2}}\right\}
$$ $\tan 2_{\delta}=2\left(u_{1} v_{1}+u_{z} v_{z}\right) /\left(u_{1}^{2}+u_{2}^{z}-v_{1}^{2}-v_{2}^{2}\right)$ $u_{1}=u_{a} \cos \Psi_{1}^{1} ; v_{1}=v_{0} \cos \Psi_{1} ; u_{2}=-u_{0} \sin \Psi_{2} ; v_{2}=-v_{0} \sin \Psi_{2}$

(d) See Fig. 4.3.

EXAMPLE 4.5 .4
(a) -23.8 cm
(b) rising
(c) HT at 0200 hours; LT at 1000 hours
(d) See Fig. 4.4.

Form factor given by $\frac{K_{1}}{M_{2}+S_{2}} \approx 0.39$; hence mixed, but predominantly semidiurnal tides.

EXAMPLE 4.5 .5

(a) No, because of variations in the vertical distribution of amplitudes and phases.
(b)

Approximations for v-component .

0. -order mode		1.-order mode		$0 .+1$ - order modes	
v_{0}	$\varphi_{v_{0}}$	v_{1}	$\varphi_{v_{1}}$	\mathbf{v}	φ_{v}
16.0	267	6.1	220	20.6	255
16.0	267	0.6	040	15.6	269
16.0	267	5.5	040	12.9	285

EXAMPLE 4.6.1
(a) Dietrich, G. and E. Kalle: Foc. cit. Example 1.1.4, pp. 443444.

Fig. 4.2: Answer to Example 4.5.2(b), (c), (d).

Fig. 4.3: Answer to Example 4.5.3(b), (d).

Fig. 4.4: Answer to Example 4.5.4(d).
(b) Substantial increase of oceanic water depth so that $c=\sqrt{g H}$ would equal the velocity of the lunar zenith.

EXAMPLE 4.6.2

(a) Because of the deflection of Coriolis force. Tsunamis are not affected because of much lower periods (ellipse degenerates essentially to a straight line).
(b) Defant, A.: Loc. cit. Example 4.4.3, pp. 70-75.
(c) Current maximum and elevation minimum characterize amphidromic point.

EXAMPLE 4.6 .3
(a) - (c) Defant, A: Loc. cit. Example 4.4.3, pp. 65-88.

EXAMPLE 4.6.4.
(a) Assuming an idealized Kelvin wave, the tidal amplitude along the "English" coast will be 67% of the amplitude along the "French" coast.
(b) Real coastline deviates strongly from idealized channel.
(c) Dietrich, G. and K. Kalle: Loc. cit. Example I.1.4, p. 465.

[^0]: (i) $\mathrm{S}=$ CONSTANT ; $\mathrm{L}_{1}=25^{\circ} \mathrm{C}, \mathrm{t}_{2}=10^{\circ} \mathrm{C}$ (NO TOTAL R:FLECTION POSSIB:E)

